• Title/Summary/Keyword: Two shaft

Search Result 546, Processing Time 0.595 seconds

Changes of Impact Variables by the Change of Golf Club Length (골프 클럽에 따른 타격자세의 변화)

  • Sung, Rak-Joon
    • Korean Journal of Applied Biomechanics
    • /
    • v.15 no.4
    • /
    • pp.181-189
    • /
    • 2005
  • To know the proper impact posture and changes for the various clubs, changes of impact variables according to the change of golf club length was investigated. Swing motions of three male low handicappers including a professional were taken using two high-speed video cameras. Four clubs iron 7, iron 5, iron 3 and driver (wood 1) were selected for this experiment. Three dimensional motion analysis techniques were used to get the kinematical variables. Mathcad and Kwon3D motion analysis program were used to analyze the position, distance and angle data in three dimensions. Major findings of this study were as follows. 1. Lateral position of the head remained more right side of the target up to 3.5cm compared to the setup as the length of the club increased. 2. Left shoulder raised up to 5cm and right shoulder lowered up to 2.5cm compared to setup. The shoulder line opened slightly (maximum 11 degrees) to the target line. 3. Forward lean angle of the trunk decreased up to 4 degrees (more erected) compared to setup. 4. Side lean angle of the trunk increased compared to setup and increased up to 16 degrees as the club length increased. 5. The pelvis moved to the target line direction horizontally and opened up to 31 degrees. Right hip moves laterally to the grip position at the setup. 6. Flexion of the left leg maintained almost constantly but the right leg flexed up to 11 degrees compared to setup. 7. Left arm is straightened but the right arm flexed about 20degrees compared to straight. 8. Center of the shoulders were in front of the knees and toes of the feet. 9. Hands moved to the left (8.7cm), forward (5.7cm) and upward (11.6cm) compared to the setup. This is because of the rotation of pelvis and shoulders. 10. Shaft angle to the ground was smaller than the lie angle of the clubs but it increased close to the lie of the clubs at impact.

Development of T700/701K engine for KUH (한국형 기동 헬기 엔진 (T700/701K) 개발)

  • Kim, Jae-Hwan;Ahn, Iee-Ki;Lee, Dae-Sung;Sung, Ok-Suck;Sung, In-Kyung
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.11a
    • /
    • pp.506-511
    • /
    • 2010
  • This paper presents development activities of the T700/701K turbo-shaft engine for Korean Utility Helicopter(KUH). The T700/701K is the first rear-drive variant of the GE's T700 engine which is proven for military applications in the world. The main workscope of the development includes a modification from a front-drive engine to a rear-drive one, an performance enhancement of the power turbine and an incorporation of two channel FADEC(Full Authority Digital Engine Control) system for more reliable operation. The first engine run for development and qualification test was successfully completed in 2008. Since the PFRT(Preliminary Flight Rating Test) has been completed, the first flight of the engine installed in the first prototype of KUH has been successfully demonstrated in March, 2010 and the engine installation compatibility tests are being carried out during KUH flight test. The test and evaluation for qualification of the engine has been done except for the LCF test up to date.

  • PDF

A study of Heat & Smoke Extraction Effects by the Various Operation of funnel Fan Shaft Ventilation (터널팬 샤프트 환기 방식에 따른 열 및 연기배출효과에 관한 연구)

  • Rie, Dong-Ho;Yoo, Ji-Oh
    • Fire Science and Engineering
    • /
    • v.18 no.2
    • /
    • pp.49-56
    • /
    • 2004
  • Today's popular ventilation systems include the combined jet fans and electrostatic precipitation systems or the combined jet fans and vertical shaft system. Tunnels with these two ventilation systems applied have been designed and opened, more and more interest has been put in maintenance of a tunnel after opening. Therefore. it is to become more important to come up with the optimal operation mode and the method for the evaluation of ventilation system. In this study, to evaluate a tunnel ventilation and its economy, a dynamic simulation program was developed which can simulate the unsteady-state tunnel air velocity and concentration of pollutants according to the traffic flow variations and operation condition of a ventilation system. We clarified the effectiveness usage on tunnel ventilation by using it and also we could found the most economical ventilation operation mode by application in real exit tunnel. We obtained that combination of fan system and electrostatic precipitation system was more economical than jet fan priority operation mode.

Design and control of extractive distillation for the separation of methyl acetate-methanol-water

  • Wang, Honghai;Ji, Pengyu;Cao, Huibin;Su, Weiyi;Li, Chunli
    • Korean Journal of Chemical Engineering
    • /
    • v.35 no.12
    • /
    • pp.2336-2347
    • /
    • 2018
  • The azeotrope of methyl acetate methanol and water was isolated using extractive distillation with water as entrainer. The pressure-swing extractive distillation (PSED) process and vapor side-stream distillation column (VSDC) with the rectifier process were designed to separate the methyl acetate, methanol and water mixture. It was revealed that the VSDC with the rectifier process had a reduction in energy consumption than the PSED process. Four control schemes of the two process were investigated: Double temperature control scheme (CS1), $Q_R/F$ feedforward control of reboiler duty scheme for PESD (CS2), $Q_R/F$ feedback control scheme for VSDC (CS3), the feedback control scheme of sensitive plate temperature of side-drawing distillation column to dominate the compressor shaft speed (CS4). Feed flow and composition disturbance were used to evaluate the dynamic performance. As a result, CS4 is a preferable choice for separation of methyl acetate-methanol-water mixture. A control scheme combining the operating parameters of dynamic equipment with the control indicators of static equipment was proposed in this paper. It means using the sensitive plate temperature of side-drawing column to control the compressor shaft speed. This is a new control scheme for extractive distillation.

A Case Study on the Establishment of an Excavation Impact Range for Evaluating the Ground Stability of Deep Tunnels and Vertical Shaft Sections in Urban Areas (도심지 대심도 터널 및 수직구 구간 지반안정성 평가를 위한 굴착영향범위 설정 사례)

  • Lee, Seohyun;Woo, Sang Inn
    • Journal of the Korean Geotechnical Society
    • /
    • v.38 no.8
    • /
    • pp.67-74
    • /
    • 2022
  • The setting of the target area for ground stability evaluation during ground excavation is categorized into theoretical and empirical estimation methods and numerical analysis methods. Generally, the applied theoretical and empirical estimation methods include those by Peck (1969), Caspe (1966), and Clough et al. (1990). The numerical analysis method comprehensively considered the current status of the task section (maximum excavation depth section, ground condition vulnerable section, etc.). It reflected the results of performing two and three-dimensional numerical analyses on the weakest section. Therefore, this study shows an example of setting the scope of influence when excavating the vertical and tunnel sections of a 000-line double-track private investment project through the above theoretical, empirical, and numerical analysis methods.

A Study on the Development of Design Chart for Drilled Shaft Socketed into Weathered Zone Using DCPT (Driving Cone Penetrometer Test) (DCPT를 이용한 풍화대 소켓 현장타설말뚝의 설계도표 개발에 관한 연구)

  • Jung, Sung-Min;Kwon, Oh-Sung;Lee, Jong-Sung;Lee, Min-Hee;Choi, Yong-Kyu
    • Journal of the Korean Geotechnical Society
    • /
    • v.26 no.5
    • /
    • pp.5-13
    • /
    • 2010
  • For the development of design chart for drilled shafts socketed into weathered zone, the 6 bi-directional pile load tests with load transfer measurements done in two in-situ sites were performed. Also, DCPTs were performed in each test point. Maximum unit skin frictions and maximum unit end bearing capacities from pile load test results were analyzed. Inter-relationships between DCPT's characteristics were also analyzed. In the soils, the inter-relationships of maximum unit skin friction and DCPT appeared so low. But in the weathered zones, inter-relationships between maximum unit skin friction / maximum unit end bearing capacity and DCPT were so high that the coefficient of correlation is over 0.70.

Plate prebending using a three-dimensional-printed model affords effective anatomical reduction in clavicular shaft fractures

  • Hyungsuk Kim;Younsung Jung;Hyun Seok Song
    • Clinics in Shoulder and Elbow
    • /
    • v.26 no.4
    • /
    • pp.397-405
    • /
    • 2023
  • Background: A precontoured plate rarely fits properly within the patient's clavicle and must be bent intraoperatively. This study aimed to determine whether anatomical reduction could be achieved using a plate bent before surgery. Methods: This study included 87 consecutive patients with displaced mid-shaft clavicle fractures who underwent plate fixation and were followed-up for a minimum of 1 year. After exclusions, 39 consecutive patients underwent fixation with a precontoured plate bent intraoperatively (intraoperative bending group), and 28 underwent fixation with the plate bent preoperatively (preoperative bending group). Using free software and a three-dimensional (3D) printer, ipsilateral clavicle 3D-printed models were constructed. Using plain radiographs, the distance between the edge of the lateral inferior cortex and the medial inferior cortex was measured. The angle between the line connecting the inferior cortex edge and the line passing through the flat portion of the superior cortex of the distal clavicle was measured. Results: Mean length differences between the ipsilateral and contralateral clavicle were smaller on both anteroposterior (AP; P=0.032) and axial images (P=0.029) in the preoperative bending group. The mean angular differences on both AP (P=0.045) and axial images (P=0.008) were smaller in the preoperative bending group. No significant differences were observed between the two groups in functional scores at the last follow-up. Conclusions: Smaller differences in length and angle between the ipsilateral and contralateral clavicle, indicative of reduction, were observed in the preoperative bending group. Using the precontoured technique with low expense, the operation was performed more effectively as reflected by a shorter operation time. Level of evidence: III.

Analysis of golf swing motion for specific properties of club shaft (클럽 샤프트(Club Shaft) 특성에 따른 골프 스윙(Golf Swing)동작 분석)

  • Kim, Sung-Il;Kim, Ky-Hyoung;Kim, Hyung-Soo;Lee, Hyun-Seob;Kim, Jin-Uk;Ahn, Chan-Gyu;Kim, Hee-Jin
    • Korean Journal of Applied Biomechanics
    • /
    • v.12 no.2
    • /
    • pp.17-32
    • /
    • 2002
  • The purpose of this study was to find the rational method to analyze golf swing with specific property of club shaft. Three subjects were filmed by two high speed digital cameras with 500 fps. The phase analyzed was downswing of each subject. The three-dimensional coordinates of the anatomical landmarks were obtained with motion analysis system Kwon3d 3.0 version and smoothed by lowpass digital filter with cutoff frequency 6Hz. From these data, kinematic and kinetic variables were calculated using Matlab(ver 5.0) The variables for this study were angular velocity and accelerations, which were calculated and following conclusions have been made : 1) Golf swing time of stiff club is faster than that of regular club. 2) In shoulder joint motion of swing with the stiff club, x-stiff showed mort rapid negative acceleration than that of regular club. 3) In regular club, the velocity of club head would be more effective velocity, which was increasing, than those of other clubs before impact. 4) In wrist joint motion of swing with stiff club, x-stiff club showed faster than regular club in the downswing and impact more rapid negative acceleration.

A Study on the Torque Characteristics Depending on the Elastic Body Materials of a Hexadecagon Shaped Ultrasonic Motor (탄성체 재질 변화에 따른 16각형 초음파모터의 토크 특성 연구)

  • Cheon, Seong-Kyu;Jeong, Seong-Su;Lee, Byung-Ha;Ha, Yong-Woo;Kim, Myong-Ho;Park, Tae-Gone
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.27 no.5
    • /
    • pp.286-291
    • /
    • 2014
  • In this study, novel ultrasonic rotary motor of hexadecagon shape stator was proposed. Stator of the hexadecagon ultrasonic motor was composed of an elastic ring and ceramics. The elastic ring had sixteen sides and sixteen angular points. Eight ceramics were attached on the outer surface of the eight sides of the ring. When rotor of cylindrical shaft was inserted inside of the ring stator, central lines of the sixteen sides of the stator hold the shaft by the slight pressures(frictions). This slight pressure was a preload of the motor and it could be controlled by radius and thickness of the ring. When two sinusoidal voltages which have 90 degree phase difference were applied to each four ceramics, elliptical displacements of inner surface of the ring were obtained. These elliptical displacements of the inner surface rotated the shaft rotor through the frictions. The proposed hexadecagon ultrasonic motor was designed and analyzed by using the finite element method (FEM), depending on materials of the elastic ring. Based on the FEM results, one model of motor which showed maximum displacement at contact points was chosen and fabricated. And characteristics of the motor were compared with simulated results. When the motor was fabricated with these results, EL20ET0.5CT0.5CW2 model showed 115[rpm] speed about input voltage of 60[Vrms] at 65.6[kHz]. And the maximum torque of 6[gfcm] was obtained. From these results, the hexadecagon shaped ultrasonic motor can be used to actuator for optical device which needs detailed position control. Also it can be used to medical and portable device by reducing size and weight.

Analysis on the Rigid Connections of the Drilled Shaft with the Cap for Multiple Pile Foundations (현장타설말뚝을 적용한 다주식 기초에서 말뚝과 캡의 강결합에 대한 분석)

  • Cho, Sung-Min
    • Journal of the Korean Geotechnical Society
    • /
    • v.24 no.7
    • /
    • pp.61-73
    • /
    • 2008
  • Piles of a bridge pier are connected with the column through the pile cap (footing). Behavior of the pile foundation can be different according to the connection method between piles and the pile cap. Connection methods between pile heads and the pile cap are divided into two groups : rigid connections and hinge connections. Domestic design code has been specified to use rigid connection method for the highway bridge. In the rigid connection method, maximum bending moment of a pile occurs at the pile head and this helps the pile to prevent the excessive displacement. Rigid methods are also good to improve the seismic performance. However, some specifications prescribe that conservative results through investigations of both the fixed-head condition and the free-head condition should be reflected in the design. This statement may induce an over-estimated design for the bridge which has high-quality structures with casing covered drilled shafts and the PC-house contained pile cap. Because the assumption of free-head conditions (hinge connections) is unreal for the elevated pile cap system with multiple piles of the long span sea-crossing bridges. On the other hand, elastic displacement method to evaluate the pile reactions under the pile cap is not suitable for this type of bridges due to impractical assumptions. So, full modeling techniques which analyze the superstructure and the substructure simultaneously should be performed. Loads and stress state of the large diameter drilled shaft and the pile cap for Incheon Bridge which will be the longest bridge of Korea were investigated through the full modeling for rigid connection conditions.