• Title/Summary/Keyword: Two reaction mechanisms

Search Result 144, Processing Time 0.023 seconds

Liftoff mechanisms in hydrogen turbulent non-premixed jet flames (수소 난류확산화염에서의 부상 메커니즘에 대한 연구)

  • Oh, Jeong-Seog;Kim, Mun-ki;Choi, Yeong-Il;Yoon, Young-Bin
    • 한국연소학회:학술대회논문집
    • /
    • 2007.05a
    • /
    • pp.7-12
    • /
    • 2007
  • To reveal the newly found liftoff height behavior of hydrogen jet, we have experimentally studied the stabilization mechanism of turbulent, lifted jet flames in a non-premixed condition. The objectives of the present research are to report the phenomenon of a liftoff height decreasing as increasing fuel velocity, to analyse the flame structure and behavior of the lifted jet, and to explain the mechanisms of flame stability in hydrogen turbulent non-premixed jet flames. The velocity of hydrogen was varied from 100 to 300m/s and a coaxial air velocity was fixed at 16m/s with a coflow air less than 0.1m/s. For the simultaneous measurement of velocity field and reaction zone. PIV and OH PLIF technique was used with two Nd:Yag lasers and CCD cameras. As results, it has been found that the stabilization of lifted hydrogen diffusion flames is related with a turbulent intensity, which means that combustion occurs where the local flow velocity is valanced with the turbulent flame propagation velocity.

  • PDF

Design of Passive Treatment Systems for Mine Drainage Waters

  • Jeen, Sung-Wook
    • Journal of Soil and Groundwater Environment
    • /
    • v.22 no.2
    • /
    • pp.1-9
    • /
    • 2017
  • Passive treatment systems are commonly used for remediation of mine drainage waters because they do not require continuous chemical inputs and operation. In this study, the selection and design criteria for such systems were evaluated, particularly the two most commonly used ones, i.e., permeable reactive barriers (PRBs) and vertical flow biological reactors (VFBRs). PRBs and VFBRs are operated on the same principles in terms of biochemical reaction mechanisms, whereas differences relate to configuration, engineering, and water management. In this study, each of these systems were described with respect to key design variables, such as metal removal mechanisms and removal rates, effectiveness and longevity, general design and construction, flow capacity, and cost. The information provided from this study could be used as a design guideline when a passive treatment option is considered for potential remediation of a mine site.

Photochemical Reaction of Aqueous Ethanol in the Presence of CO (일산화탄소가 포함된 에탄올 수용액의 광화학 반응)

  • Kim, Hui Jeong;Lee, Hyeong Cheol;Park, Hyeong Ryeon
    • Journal of the Korean Chemical Society
    • /
    • v.38 no.4
    • /
    • pp.271-275
    • /
    • 1994
  • The photochemical reaction of aqueous ethanol saturated with argon and carbon monoxide has been investigated using 184.9 nm UV light. The photochemical reaction of $1{\times}10^{-2}$ M aqueous ethanol saturated with argon results in the formation on the acetaldehyde and 2,3-butanediol. The irradiation of the solution saturated with carbon monoxide causes the formation of carbonylation and carboxylation products such as ${\alpha}$-hydroxypropionaldehyde, formaldehyde, glyoxal, formic acid, oxalic acid and glyoxylic acid in addition to above two products. But in the case of concentrated ethanol solutions, the irradiation did not give carbonylation and carboxylation products. The initial quantum yields of the products were determined and probable mechanisms for the reaction were presented on the basis of product analysis.

  • PDF

Kinetic Studies on Bromine-Exchange Reactions of Antimony Tribromide with $\alpha$-Phenyl-n-butyl and $\alpha$-Phenyl-i-butyl Bromides in Nitrobenzene$^\dag$

  • Rhyu, Sok-Hwan;Choi, Sang-Up
    • Bulletin of the Korean Chemical Society
    • /
    • v.8 no.5
    • /
    • pp.408-414
    • /
    • 1987
  • The rate of bromine-exchange reaction between antimony tribromide and ${\alpha}-phenyl-n-butyl$ bromide in nitrobenzene has been determined, using antimony tribromide labelled with Br-82. The results indicate that the exchange reaction follows the first-order kinetics with respect to the organic bromide, and either the second- or first-order kinetics with respect to antimony tribromide depending on its concentration. The third-order rate constant obtained was 7.50 ${\times}10^{-2}l^2mol^{-2}s^{-1}$ at 28$^{\circ}$C. Similar study on the bromine-exchange reaction between antimony tribromide and ${\alpha}$-phenyl-i-butyl bromide has also been carried out. The results of the study show the same kinetic orders as the ones observed with $\alpha$-phenyl-n-butyl bromide. The third-order rate constant observed was 2.40 ${\times} 10^{-2} l^2mol^{-2}s^{-1}$ at 28$^{\circ}$C. The activation energy, the enthalpy of activation and the entropy of activation for the two exchange reactions mentioned above have been determined. The reaction mechanisms for the exchange reactions are discussed.

NUMERICAL ANALYSIS OF A 150KW HUELS TYPE ARC HEATER (150kW급 Huels형 아크 히터 내부의 유동 해석)

  • Han, S.H.;Byeon, J.Y.;Kim, K.H.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2010.05a
    • /
    • pp.562-566
    • /
    • 2010
  • Numerical analysis of 150kW Huels-type arc jet was performed using compressible Navier-Stokes CFD code. To consider chemical reaction by high temperature, the flow was assumed to be chemical equilibrium states. As a turbulence and a radiation model, the two-equation k-epsilon model and the 3-band radiation model were adopted, respectively. Mass flow rate and current density were given as conditions for calculations. In this study, two kinds of mechanisms for injection of air flow wire considered. One is that air is provided by left wall surface and the other is that air is injected from upper wall surface. The pressure, density and temperature contours of two cases were compared and heat transfer rates were estimated. The numerical results of two cases were not much different to each other. However, in real 150KW device, air is injected from upper wall surface with swirl. To calculate more accurately, swirl effect is must be considered.

  • PDF

Ion beam induced surface modifications of sapphire and gold film deposition: studies on the adhesion enhancement and mechanisms (Ion Beam을 이용한 사파이어($Al_2O_3$) 표면개질 및 금(Au) 박막증착: 접합성 향상 및 접학기구에 대한 연구)

  • 박재원;이광원;이재형;최병호
    • Journal of the Korean Vacuum Society
    • /
    • v.8 no.4B
    • /
    • pp.514-518
    • /
    • 1999
  • Gold (Au) is not supposed to react with sapphire(single crystalline ) under thermodynamic equillibrium, therefore, a strong adhesion between these two dissimilar materials is not expected. However, pull test showed that the gold film sputter-deposited onto annealed and pre-sputtered sapphire exhibited very strong adhesion even without post-deposition annealing. Strongly and weakly adhered samples as a result of the pull testing were selected to investigate the adhesion mechanisms with Auger electron spectroscopy. The Au/ interfaces were analyzed using a new technique that probes the interface on the film using Auger electron escape depth. It revealed that one or two monolayers of Au-Al-O compound formed at the Au/Sapphire interface when AES in the UHV chamber. It showed that metallic aluminum was detected on the surface of sapphire substrates after irradiating for 3 min. with 7keV Ar+ -ions. These results agree with TRIM calculations that yield preferential ion-beam etching. It is concluded that the formation of Au-Al-O compound, which is responsible for the strong metal-ceramic bonding, is due to ion-induced cleaning and reduction of the sapphire surface, and the kinetic energy of depositing gold atoms, molecules, and micro-particles as a driving force for the inter-facial reaction.

  • PDF

Formation Mechanism of Aroma Compound during Tea Manufacturing Process (차 향기의 생성 메커니즘)

  • Cho, MiJa;Cho, Gijeong;Choi, HyunSook;Choi, Dubok;Cho, KiAn;Cho, Hoon
    • KSBB Journal
    • /
    • v.31 no.2
    • /
    • pp.91-99
    • /
    • 2016
  • Tea is an aqueous infusion of dried leaves of the plant Camellia sinensis L. and is the second most widely consumed beverage around the world after water. Aroma compounds of tea differ largely depending on the manufacturing process, even from the same categories of different origins. The flavor of tea can be divided into two categories: taste (non-volatile compounds) and aroma (volatile compounds). In the present study, we review the formation mechanism of main aromas generated from carotenoids, lipids, glycosides as precursors, and Maillard reaction during the tea manufacturing process, with biological and chemical mechanisms.

A Numerical Investigation on the Dynamic Behaviors of Single Vortex in a Reacting and Non-reacting Jet Flow (반응과 비반응 제트유동에서 단일 와동의 동적 거동에 대한 수치해석적 연구)

  • Hwang Chul-Hong;Oh Chang-Bo;Lee Dae-Yup;Lee Chang-Eon
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2002.05a
    • /
    • pp.35-40
    • /
    • 2002
  • The dynamic behaviors of the single vortex in a reacting and non-reacting methane-air jet flow were investigated numerically. The numerical method was based on a predictor-corrector for low Mach number flow A two-step global reaction mechanism was adopted as a combustion model. After fuel and air were developed entirely in computational domain, the single vortex was generated by an axisymmetric jet that was impulsed to emit a cold fuel. Through comparisons of single vortex in reacting and non-reacting jet flow, it was found that global dynamic behaviors and the mechanisms leading to the formation, transport processes of vortex ring were influenced significantly by heat release from reaction. In addition, the interaction between a single vortex and flame bulge generated by buoyance effect in a reacting jet flow was found.

  • PDF

Extended H$\ddot{u}$ckel Calculations on the Oxidative Addition Reaction of $(TBA)_2Pt(CN)_4$ with Halogen

  • Ko, Jae-Jung;Park, Kuk-Tae;Lee, Ik-Choon;Lee, Bon-Su
    • Bulletin of the Korean Chemical Society
    • /
    • v.10 no.5
    • /
    • pp.443-447
    • /
    • 1989
  • The mechanism on the oxidative addition reaction of $(TBA)_2\;Pt(CN)_4$ with $Cl_2$ has been studied by means of extended Huckel calculations. Among two possible mechanisms, computational calculations demonstrated that the linear approach of $Cl_2$ to a $Pt(CN)_4$ moiety is more favourable than three-centered transition state. From our calculations, the most stable process is that a $Pt(CN)_4$ moiety interacts with $Cl_2$ in the linear transition state and the cleavage of Cl-Cl bond in a coordinated halogen occurred spontaneously, giving rise to a trans product by back-attacking a $Pt(CN)_4Cl$ moiety by Cl. The process consists of the comparison in the stability of each intermediate with use of bonding and potential energy.

Mechanism on the Synthesis of Titanium Carbide by SHS (Self-Propagating High-Temperature Synthesis) Method (자체반응열 고온합성법에 의한 탄화티타늄 합성에 관한 메카니즘)

  • Ha, Ho;Hwang, Gyu-Min;Han, Hee-Dong
    • Journal of the Korean Ceramic Society
    • /
    • v.31 no.11
    • /
    • pp.1249-1258
    • /
    • 1994
  • Titanium carbide was synthesized by reacting the prepared titanium powder and carbon black using SHS method sustains the reaction spontaneously, utilizing heat generated by the exothermic reaction itself. In this process, the effect of the particle size of titanium powder on combustion temperature and combustion wave velocity was investigated. By controlling combustion temperature and combustion wave velocity via mixing Ti and C powder with TiC, the reaction kinetics of TiC formation by SHS method was considered. Without reference to the change of combustion temperature and combustion wave velocity, TiC was easily synthesized by combustion reaction. As the particle size of titanium powder was bigger, or, as the amount of added diluent(TiC) increased, combustion temperature and combustion wave velocity were found to be decreased. The formation of TiC by combustion reaction in the Ti-C system seems to occur via two different mechanisms. At the beginning of the reaction, when the combustion temperatures were higher than 2551 K, the reaction was considered to be controlled by the rate of dissolution of carbon into a titanium melt with an apparent activation energy of 148 kJ/mol. For combustion temperatures less than 2551 K, it was considered to be controlled by the atomic diffusion rate of carbon through a TiC layer with an apparent activation energy of 355 kJ/mol. The average particle size of the synthesized titanium carbide was smaller than that of the starting material(Ti).

  • PDF