• Title/Summary/Keyword: Two frequency band

Search Result 940, Processing Time 0.024 seconds

Design and Manufacture of FMCW Radar with Multi-Frequency Bandwidths (다중 대역폭을 갖는 FMCW 레이다 송수신기 설계 및 제작)

  • Hwang, Ji-hwan;Kim, Seung Hee;Kang, Ki-mook;Kim, Duk-Jin
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.27 no.4
    • /
    • pp.377-387
    • /
    • 2016
  • Design of X-band frequency FMCW based imaging radar with multi-resolutions and performances of the self-manufactured radar system are presented in this study. In order to implement the multi-bandwidths, a ramp sequence of the FMCW signal is consisting of two kinds of 'saw-tooth' waveform with different bandwidth, and a receiver circuit consisting of L-band source and frequency converter circuit is used to effectively extract spectra of beat-frequency from the received signal of X-band frequency. The system setups for performance measurement of self-manufactured radar system are maximum output power of 35 dBm, sampling frequency of 1.2 MHz and sweep time of 1 ms. Then, the measured resolutions of the modulated signal having bandwidth of 500 MHz and 300 MHz in range & azimuth-direction are (0.28 m, 0.26 m) and (0.44 m, 0.27 m), respectively.

Two-Port Vector Network Analysis System with a Vector Signal Channel (벡터 전압 수신기를 이용한 2-포트 산란 계수 분석 시스템)

  • Lee, Dong-Joon
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.24 no.5
    • /
    • pp.541-548
    • /
    • 2013
  • This paper presents a vector network analysis system for 2-port scattering parameters of microwave devices using some basic microwave instruments/devices such as signal generators, vector voltmeter, directional couplers and frequency mixers. The analytical model and implementation method for scattering parameter measurements - which can replace the vector network analyzers - are presented. The performance of the implemented system is evaluated through 1- and 2-port scattering parameter measurements, respectively. The vector volt signals which determine the scattering parameters are detected in two distinct methods depending on the frequency band of interests; a direct-detection method with a single signal generator and vector voltmeter for relatively low band and a heterodyne method to frequency down-mix associated with an additional signal source as well as frequency mixers for high band are used, respectively. Using these two methods, scattering parameters of UHF and X bands are evaluated and their performances are verified through a comercial vector network analyzer.

A Design of Dual Band Amplifier Using Left Handed Transmission Lines (LH 전송선로를 이용한 이중대역 증폭기의 설계)

  • Lim, Jong-Sik;Lee, Jae-Hoon;Lee, Jun;Koo, Ja-Kyung;Jeong, Yong-Chae;Han, Sang-Min;Ahn, Dal
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.11
    • /
    • pp.2032-2037
    • /
    • 2010
  • This paper describes a design of dual band amplifier using left handed (LHJ) transmission line, which is a part of composite right/left handed (CRLH) transmission line. It is well known that CRLH transmission lines show dual band frequency response. At first, two single-band amplifiers for frequency f1 and f2 are designed, and their matching networks at both amplifiers are synthesized into the dual band matching network by adopting CRLH structure. As an example for proving the validity of the proposed design, a dual band amplifier operating at 1800MHz and 2300MHz is designed, fabricated and measured. The simulation and measurement show that the proposed amplifier operates well at the desired dual bands with the gain of 13.65dB and 19dB at 1850MHz and 2360MHz, respectively, and a good matching performances. In addition, a quite good agreement between the simulation and measurement is observed.

Dual-Band Microstrip Patch Antenna with Switchable Orthogonal Linear Polarizations

  • Kim, Jeongin;Sung, Youngje
    • Journal of electromagnetic engineering and science
    • /
    • v.18 no.4
    • /
    • pp.215-220
    • /
    • 2018
  • This study presents a dual-band polarization-reconfigurable antenna that comprises a large square patch with a pair of corner-cut edges and two small square patches with a shorting via. Two PIN diodes are located between the large square patch and two small square patches. Depending on the bias state applied to the two PIN diodes, each small patch may be disconnected or connected to the large square patch. As a result, the proposed antenna can provide polarization reconfigurability between two orthogonal linear polarizations. Further, the proposed antenna operates at 2.51 GHz and 2.71 GHz. From the measured results, the proposed antenna shows a 10 dB bandwidth of 2.39% (2.49-2.55 GHz) and 2.58% (2.68-2.75 GHz). In this work, the frequency ratio can be easily controlled by changing the size of the small patch.

Design of a Dual Band High PAE Power Amplifier using Single FET and CRLH-TL (Single FET와 CRLH 전송선을 이용한 이중대역 고효율 전력증폭기 설계)

  • Kim, Seon-Sook;Seo, Chul-Hun
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.47 no.2
    • /
    • pp.56-61
    • /
    • 2010
  • In this paper, high efficient power amplifier with dual band has been realized. Dual band power amplifier have used modify stub matching for single FET, center frequency 2.14GHz and 5.2GHz respectively. The dual-band operation of the CRLH TL is achieved by the frequency offset and the nonlinear phase slope of the CRLH TL for the matching network of the power amplifier. Because the control of the all harmonic components is very difficult m dual-band, we have managed only the second- and third-harmonics to obtain the high efficiency with the CRLH TL in dual-band. Dual-band characteristics in the output has to balance. Two operating frequencies are chosen at 2.14 GHz and 5.2 GHz in this work. The measured results show that the output power of 28.56 dBm and 29 dBm was obtained at 2.14 GHz and 5.2 GHz, respectively. At this point, we have obtained the power-added efficiency (PAE) of 65.824 % and 69.86 % at two operation frequencies, respectively.

Compatibility between LTE Cellular Systems and WLAN (LTE 셀룰라 시스템과 무선랜의 양립성 분석)

  • Jo, Han-Shin
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.26 no.2
    • /
    • pp.171-178
    • /
    • 2015
  • 3GPP long-term evolution(LTE) band 2.3~2.4 GHz is adjacent to 2.4~2.5 GHz band for WLAN, and therefore compatibility study of the two systems is desirable. We propose a dynamic system simulation methodology to investigate the effect of WLAN interference on LTE systems. As capturing space/time/frequency changes in system parameters, the dynamic system simulation can exactly predict real system performance. Using the proposed methodology, we obtain LTE downlink throughput loss for the frequency separation between the two systems. Throughput loss under 1 % is obtained from guard band over 11 MHz(single channel allocation) or 10 MHz(three channel allocation).

The Design and Measurements of 100/150 GHz Band Single Side Band Filters by Using Rotated Polarization (편파 회전을 이용한 100/150 GHz 대역용 단측파대 여파기의 제작 및 성능측정)

  • Park, Jong-Ae;Han, Seog-Tae;Kim, Tai-Seong;Kim, Kwang-Dong;Kim, Hyo-Ryong;Chung, Hyun-Su;Cho, Se-Hyung;Yang, Jong-Man
    • Journal of the Korean Institute of Telematics and Electronics D
    • /
    • v.36D no.2
    • /
    • pp.20-30
    • /
    • 1999
  • We have made the single side hand filter for the dual channel receiver which is a heterodyne receiver to observe the cosmic radio waves with 100GHz band ranged from 85GHz to 115GHz and 150GHz band ranged from 125GHz to 175GHz simultaneously. We have introduced the filter theory using the principle of the Martion-Puplett interferometer, which has the characteristics of rotated polarization. To reduce the loss of the transmission and beam coupling which are caused from the path difference associated with the intermediate frequency the design and the implementation have been intensely considered. The receiver needs two filters with different characteristics each other. Because each of them has the optimum positions as a function frequency at which the signal frequency is fed to mixer and the image frequency is rejected to the image termination load. The intermediate frequency and its band width have been also evaluated. We have measured the property of two filters using the vector network analyser and the beam measurement system which is made by us. The responses of the filter as a function of the position and the frequency are compared with the theory. It is shown that not only the measured values are very close to the theoretical values, but also the image rejection ratios are better than 22dB for both filters. Through successful observation using a dual channel receiver with two manufactured filters, the performance of the filters has finally verified.

  • PDF

Image reconstruction of rotating objects using X-band CW signal (X-대역 단일 주파수 신호에 의한 회전물체의 영상재현)

  • Suh, Kyoung-Whoan;Shin, Seong-Won;Ra, Jung-Woong
    • Proceedings of the KIEE Conference
    • /
    • 1987.11a
    • /
    • pp.377-382
    • /
    • 1987
  • To obtain a high resolution microwave images, back scattering microwave fields from one, two, four poles on a rotating object is measured. A computation algorithm to reconstruct these poles images from measured data is programed. The program is tested for these poles on a rotating object for different frequency intervals in the X-Band. The more frequency data yield the reduction of side lobe level. The reconstructed image for the two pole objects having the diameter of 1cm and separated by 1 lamda, 2 lamda (lamda-3.75 cm) from the measured data is shown. And, the image of two objects having the different reflectivity coefficient from the measured data is also shown and it assumes that this reconstructing algorithm from the measured angular spectrum provides quite accurate images.

  • PDF

First Simultaneous Dual-Frequency Phase Referencing VLBI Observation with KVN

  • Jung, Tae-Hyun;Sohn, Bong-Won;Byun, Do-Young
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.36 no.2
    • /
    • pp.128.1-128.1
    • /
    • 2011
  • We present the results of the first simultaneous dual-frequency VLBI observation with KVN (Korean VLBI Network). The KVN has a unique multi-frequency receiving system performing simultaneous observations at four frequencies, such as 22, 43, 86, and 129 GHz, in order to calibrate the atmospheric phase fluctuations, which cause a severe degradation of an interferometric coherence in mm-VLBI regime. In order to test the multi-frequency phase referencing capability of KVN, we observe the bright continuum VLBI source, NRAO 150 at two different frequencies of 21.7 (K band) and 43.4 (Q band) GHz simultaneously. The VLBI fringe phases at K and Q bands show a tight correlation of phase behaviors and the results of phase referencing (residual phase, coherence etc) are promising for achieving excellent phase referencing observations with KVN. The KVN will be able to open new perspectives in the multi-frequency study of VLBI.

  • PDF

A Study of Phase Noise Due to Power Supply Noise in a CMOS Ring Oscillator

  • Park Se-Hoon
    • Journal of information and communication convergence engineering
    • /
    • v.3 no.4
    • /
    • pp.184-186
    • /
    • 2005
  • The effect of power supply noise on the phase noise of a ring oscillator is studied. The power supply noise source in series with DC power supply voltage is applied to a 3 stage CMOS ring oscillator. The phase noise due to the power supply noise is modeled by the narrow band phase modulation. The model is verified by the fact that the spectrum of output of ring oscillator has two side bands at the frequencies offset from the frequency of the ring oscillator by the frequency of the power supply noise source. Simulations at several different frequency of the power supply noise reveals that the ring oscillator acts as a low pass filter to the power supply noise. This study, as a result, shows that the phase noise generated by the power supply noise is inversely proportional to the frequency offset from the carrier frequency.