• Title/Summary/Keyword: Two compartment model

Search Result 114, Processing Time 0.02 seconds

Development and Application of Two-Dimensional Hydrogen Mixing Model in Containment Subcompartment Under Severe Accidents

  • Lee, Byung-Chul;Cho, Jae-Seon;Park, Goon-Cherl;Chung, Chang-Hyun
    • Nuclear Engineering and Technology
    • /
    • v.29 no.2
    • /
    • pp.110-126
    • /
    • 1997
  • A two-dimensional continuum model for the hydrogen mining phenomena in the containment subcompartment under severe accident conditions has been developed to predict the spatial distribution of the hydrogen concentration. The model can predict the distribution of time-dependent hydrogen concentration for HEDL experiments well. For the simulation of these experiments, the hydrogen is mixed uniform within the test compartment. To predict the extent of non-uniform distribution, the dominant factors such as the geometrical shape of obstacle and velocity of source injection in mixing phenomena are investigated. If the obstacle disturbing the flow of gas mixture exists in the compartment, the uniform distribution of hydrogen might be not guaranteed. The convective circulation of gas flow is separately formed up and down of the obstacle position, which makes a difference of hydrogen concentration between the upper and lower region of the compartment. The recirculation flow must have a considerable mass flow rate relative to velocity of the source injection to sustain the well-mixed conditions of hydrogen. Finally, in order to account for non-uniform distribution of the hydrogen due to the geometrical configuration the maximum-to-average ratio is functionalized.

  • PDF

Pharmacokinetic profile and tissue distribution of sulfamethazine in pigs and rats (돼지와 랫트에서 sulfamethazine의 약물동태학 및 조직분포)

  • Yun, Hyo-in;Park, Seung-chun;Oh, Tae-kwang;Cho, Joon-hyoung;Park, Jong-myeong
    • Korean Journal of Veterinary Research
    • /
    • v.37 no.2
    • /
    • pp.291-299
    • /
    • 1997
  • In order to establish optimal dosage schedules and withdrawal times for sulfamethazine(SMZ) in pigs, pharmacokinetic and tissue distribution experiments were conducted in pigs. For comparative purposes, tissue depletion kinetics are also studied in rats. From three pigs administered with SMZ i.v., the pharmacokinetic profile of SMZ in two pigs was adequately described by a one-compartment open model whereas that in one pig was patterned after a two-compartment open model. Volume of distribution(Vd) was 0.48~0.57 L/kg and biological half-life($t_{1/2}$) was 11.8-16.8 h. From three pigs dosed with SMZ p.o., pharmacokinetic profile was explainable with a one-compartment open model. Time to reach maximum SMZ concentration in serum (Tmax) was 2.8 h, 3.2 h and 7.5 h. Elimination half-life was 2.8-7.5 h. The descending order in concentration of SMZ was plsama > kidney > liver > lung > heart > pancreas > spleen > duodenum > ileum > brain > adipsoe tissue from three pigs sacrificed at 5h, 29h and 54h after the administration of SMZ, p.o.. The protein binding of SMZ in pigs was 55.2%($2.5{\mu}g/ml$), 71.5% ($5{\mu}g/kg$) and 71.5%($10{\mu}g/ml$). The mean systemic bioavailability (F) of SMZ p.o. was 49.1 %. Meanwhile the pharmacokinetic profile of SMZ in rats was adequately described by a one-compartment open model. Absorption of SMZ p.o. in the rat was very rapid. In conclusion, the oral optimal dosage regimen of SMZ for pigs was the initial dose of 45.7 mg/kg followed by the maintenance dose of 30.2 mg/kg for high specific pathogens to SMZ. The time to reach below the stipulated residual allowable concentration (0.1 ppm) was calculated 93 h after oral administration of 200 mg/kg recommended by manufactureres.

  • PDF

Prediction of Damage Extents due to In-Compartment Explosions in Naval Ships (내부 폭발에 의한 함정의 손상 예측)

  • Wonjune Chang;Joonmo Choung
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.61 no.1
    • /
    • pp.44-50
    • /
    • 2024
  • In order to reasonably predict damage extents of naval ships under in-compartment explosion (INCEX) loads, two conditions should be fulfilled in terms of accurate INCEX load generation and fracture estimation. This paper seeks to predict damage extents of various naval ships by applying the CONWEP model to generate INCEX loads, combined with the Hosford-Coulomb (HC) and localized necking (LN) fracture model. This study selected a naval ship with a 2,000-ton displacement, using associated specifications collected from references. The CONWEP model that is embedded in a commercial finite element analysis software ABAQUS/Explicit was used for INCEX load generation. The combined HC-LN model was used to simulate fracture initiation and propagation. The permanent failures with some structural fractures occurred where at the locations closest to the explosion source points in case of the near field explosions, while, some significant fractures were observed in way of the interfaces between bulkheads and curtain plates under far field explosion. A large thickness difference would lead to those interface failures. It is expected that the findings of this study enhances the vulnerability design of naval ships, enabling more accurate predictions of damage extents under INCEX loads.

VALIDATION AND UTILIZATION OF THE SKINTEXTM SYSTEM

  • Gordon, V.C.;Realica, B.;Tolstrup, K.;Puls, B.
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.17 no.1
    • /
    • pp.64-80
    • /
    • 1991
  • The SKINTEX Method is based on a two-compartment physico-chemical model which includes a Biomembrane Barrier in compartment one and an organized macromolecular matrix in compartment two. Test samples absorb onto or permeate through the keratin/collagen Biomembrane Barrier and then can interact with the organized macromolecular matrix. Changes in the integrity of the barrier release a dye indicator: Changes in the matrix can alter its transparency. The sum of these two responses is read spectrophotometrically at 470nm. An early investigation of 950 chemicals and formulations in the SKINTEX System produced results which were 89% concordance to in vivo Draize dermal irritation results obtained with 24-hour occluded application of test samples with-out abrasion and standard scoring. Alkaline materials were analyzed in a specialized SKINTEX AMA Protocol. In this early study, the model did not distinguish nonirritant test materials and formulation with PDII(Primary Dermal Irritation Index)in the range from 0 to 1.2, A High Sensitivity Assay Protocol(HSA)was developed to amplify the changes in both compartments of this model and provide more accurate calibration of these changes. A study of 60 low irritation test samples including cosmetics, household products, chemicals and petro-chemicals distinguished nonirritants with PDII $\leq$ 0.7 for 26 of 30 nonirritants. A second protocol was developed to evaluate the SKINTEX model predictability with respect to human irritation. The Human Response Assay (HRA )has been optimized based on differences in penetration and irritation responses in humans and rabbits. An additional 32 test materials with different mechanisms and degrees of dermal toxicity were evaluated by the HRA. These in vitro results were 86% concordant to human patch test results. In order to further evaluate this model, a Standard Chemical Labelling (SCL) Protocol was developed to optimize this system to predict Draize dermal irritation results after a 4-hour application of the test material. In a study of 52 chemicals including acids, bases, solvents, salts, surfactants and preservatives, the SCL results demonstrated 85% concordance to Draize results for a 4-hour application of test samples on non-abraded rabbit skin. The SKINTEX System, including three specialized protocols, provided results which demonstrated good correlation to the endpoint of dermal irritation in man and rabbits at different application times.

  • PDF

Regional Myocardial Blood Flow Estimation Using Rubidium-82 Dynamic Positron Emission Tomography and Dual Integration Method (Rubidium-82 심근 Dynamic PET 영상과 이중적분법을 이용한 국소 심근 혈류 예측의 기본 모델 연구)

  • 곽철은;정재민
    • Journal of Biomedical Engineering Research
    • /
    • v.16 no.2
    • /
    • pp.223-230
    • /
    • 1995
  • This study investigates a combined mathematical model for the quantitative estimation of regional myocardial blood flow in experimental canine coronary artery occlusion and in patients with ischemic myocardial diseases using Rb-82 dynamic myocardial positron emission tomography. The coronary thrombosis was induced using the new catheter technique by narrowing the lumen of coronary vessel gradually, which finally led to partial obstruction of coronary artery. Thirty four Rb-82 dynamic myocardial PET scans were performed sequentially for each experiment using our 5, 10 and 20 second acquisition protocol, respectively, and six to seven regions of interest were drawn on each transaxial slices, one on left ventricular chamber for input function and the others on normal and decreased perfusion myocardial segments for the flow estimation in those regions. Two compartment model and graphical analysis method have been applied to the measured sets of regional PET data, and the rate constants of influx to myocardial tissue were calculated for regional myocardial flow estimates with the two parameter fits of raw data by the Levenberg-Marquardt method. The results showed that, (I) two compartment model suggested by Kety-Schmidt, with proper modification of the measured data and volume of distribution, could be used for the simple estimation of regional myocardial blood flow, (2) the calculated regional myocardial blood flow estimates were dependent on the selection of input function, which reflected partial volume effect and left ventricular wall motion in previously used graphical analysis, and (3) mathematically fitted input and tissue time activity curves were more suitable than the direct application of the measured data in terms of convergence.

  • PDF

Towards Quantitative Assessment of Human Exposures to Indoor Radon Pollution from Groundwater

  • Donghan Yu;Lee, Han-Soo
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.17 no.E2
    • /
    • pp.43-51
    • /
    • 2001
  • A report by the national research council in the United States suggested that many lung cancer deaths each year be associated with breathing radon in indoor air. Most of the indoor radon comes directly from soil beneath the basement of foundations. Recently, radon released from groundwater is found to contribute to the total inhalation risk from indoor air. This study presents the quantitative assessment of human exposures to radon released from the groundwater into indoor air. At first, a three-compartment model is developed to describe the transfer and distribution of radon released from groundwater in a house through showering, washing clothes, and flushing toilets. Then, to estimate a daily human exposure through inhalation of such radon for an adult. a physiologically-based pharmacokinetic(PBPK) model is developed. The use of a PBPK model for the inhaled radon could provide useful information regarding the distribution of radon among the organs of the human body. Indoor exposure patterns as input to the PBPK model are a more realistic situation associated with indoor radon pollution generated from a three-compartment model describing volatilization of radon from domestic water into household air. Combining the two models for inhaled radon in indoor air can be used to estimate a quantitative human exposure through the inhalation of indoor radon for adults based on two sets of exposure scenarios. The results obtained from the present study would help increase the quantitative understanding of risk assessment issues associated with the indoor radon released from groundwater.

  • PDF

Modeling Study on Nuclide Transport in Ocean - an Ocean Compartment Model (해양에서의 핵종이동 모델링 - 해양구획 모델)

  • Lee, Youn-Myoung;Suh, Kyung-Suk;Han, Kyong-Won
    • Nuclear Engineering and Technology
    • /
    • v.23 no.4
    • /
    • pp.387-400
    • /
    • 1991
  • An ocean compartment model simulating transport of nuclides by advection due to ocean circulation and intertaction with suspended sediments is developed, by which concentration breakthrough curves of nuclides can be calculated as a function of time. Dividing ocean into arbitrary number of characteristic compartments and performing a balance of mass of nuclides in each ocean compartment, the governing equation for the concentration in the ocean is obtained and a solution by the numerical integration is obtained. The integration method is specially useful for general stiff systems. For transfer coefficients describing advective transport between adjacent compartments by ocean circulation, the ocean turnover time is calculated by a two-dimensional numerical ocean model. To exemplify the compartment model, a reference case calculation for breakthrough curves of three nuclides in low-level radioactive wastes, Tc-99, Cs-137, and Pu-238 released from hypothetical repository under the seabed is carried out with five ocean compartments. Sensitivity analysis studies for some parameters to the concentration breakthrough curves are also made, which indicates that parameters such as ocean turnover time and ocean water volume of compartments have an important effect on the breakthrough curves.

  • PDF

Manual model updating of highway bridges under operational condition

  • Altunisik, Ahmet C.;Bayraktar, Alemdar
    • Smart Structures and Systems
    • /
    • v.19 no.1
    • /
    • pp.39-46
    • /
    • 2017
  • Finite element model updating is very effective procedure to determine the uncertainty parameters in structural model and minimize the differences between experimentally and numerically identified dynamic characteristics. This procedure can be practiced with manual and automatic model updating procedures. The manual model updating involves manual changes of geometry and analyses parameters by trial and error, guided by engineering judgement. Besides, the automated updating is performed by constructing a series of loops based on optimization procedures. This paper addresses the ambient vibration based finite element model updating of long span reinforced concrete highway bridges using manual model updating procedure. Birecik Highway Bridge located on the $81^{st}km$ of Şanliurfa-Gaziantep state highway over Firat River in Turkey is selected as a case study. The structural carrier system of the bridge consists of two main parts: Arch and Beam Compartments. In this part of the paper, the arch compartment is investigated. Three dimensional finite element model of the arch compartment of the bridge is constructed using SAP2000 software to determine the dynamic characteristics, numerically. Operational Modal Analysis method is used to extract dynamic characteristics using Enhanced Frequency Domain Decomposition method. Numerically and experimentally identified dynamic characteristics are compared with each other and finite element model of the arch compartment of the bridge is updated manually by changing some uncertain parameters such as section properties, damages, boundary conditions and material properties to reduce the difference between the results. It is demonstrated that the ambient vibration measurements are enough to identify the most significant modes of long span highway bridges. Maximum differences between the natural frequencies are reduced averagely from %49.1 to %0.6 by model updating. Also, a good harmony is found between mode shapes after finite element model updating.

Sorption Kinetics of Hydrophobic Organic Compounds in Wetland Soils (습지 토양에서 소수성 유기화합물질의 흡착 동력학)

  • Park, Je-Chul;Shin, Won-Sik
    • Korean Journal of Ecology and Environment
    • /
    • v.36 no.3 s.104
    • /
    • pp.295-303
    • /
    • 2003
  • Sorption kinetics of hydrophobic organic compounds (chlorobenzene and phenanthrene) in natural wetland soils was investigated using laboratory batch adsorbers. One -site mass transfer model (OSMTM) and two compartment first-order kinetic model (TCFOKM) were used to analyze sorption kinetics. Analysis of OSMTM reveals that apparent sorption equilibria were obtained within 10 to 75 hours for chlorobenzene and 2 hours for phenanthrene, respectively. For chlorobenzene, the sorption equilibrium time for surface soil was longer than that of deeper soil presumably due to physico-chemical differences between the soils. For phenanthrene, however, no difference in sorption equilibrium time was observed between the soils. As expected from the number of model parameters involved, the three-parameter TCFOKM was better than the two-parameter OSMTM in describing sorption kinetics, The fraction of fast sorption ($f_1$) and the first-order sorption rate constants for fast ($k_1$)and slow ($k_2$) compartments were determined by fitting experimental data to the TCFOKM. The results of TCFOKM analysis indicate that the sorption rate constant in the fast compartment($k_1$) was much greater than that of slow fraction($k_2$) . The fraction of the fast sorption ($f_1$) and the sorption rate constant in the fast compartment($k_1$) were increasing in the order of increasing $k_{ow}$, phenanthrene > chlorobenzene. The first-order sorption rate constants in the fast ($k_1$) and slow ($k_2$) compartments were found to vary from $10^{-0.1}\;to\;-10^{1.0}$ and from $10^{-4}\;to-10^{-2}$, respectively.

Simulation of lesion-to-liver contrast difference curves in Dynamic Hepatic CT with Pharmacokinetic Compartment Modeling (Pharmacokinetic Compartment Modeling을 이용한 나선식 CT에서의 간암-간 대조 곡선의 Simulation)

  • S.J. Kim;K.H. Lee;J.H. Kim;J.K. Han;B.G. Min
    • Journal of Biomedical Engineering Research
    • /
    • v.20 no.2
    • /
    • pp.173-182
    • /
    • 1999
  • Contrast-enhanced CT has an important role in assessing liver lesions, the optimal protocol to get most effective result is not clear. The mein goal when deciding injention protocol is to optimize lesion detectability with rapid scanning when lesion to liver contrast is maximum. For this purpose, we developed a physiological model of the contrast medium enhancement based on the compartment modeling and pharmacokinetics. Blood supply to liver is achieved in two paths. This dual supply characteristic distinguishes the CT enhancement of liver from that of the other organs. The first path is by hepatic artery and to second, by portal vein. However, it is assumed that only gepatic artery can supply blood to hepatocellular carcinoma(HCC) compartment, thus, the difference of contrast enhancement is resulted between normal liver tissue and hepatic tumor. By solving differential equations for each compartment simultaneously using the computer program Matlab, CT contrast-enhancement curves were simulated. The simulated enhancement curves for aortic, hepatic, portal vein, and HCC compartments were compared with the mean enhancement curves from 24 patients exposed to the same protocols as the simulation. These enhancement curves showed a good agreement. Furthermore, we simulated lesion-to-liver curves for various injection protocols, and the effects were analyzed. The variables to be considered in the injection protocol were injection rate, dose, and concentration of contrast material. These data may help to optimize scanning protocols for better diagnosis.

  • PDF