• Title/Summary/Keyword: Two Wheel Driving Robot

Search Result 36, Processing Time 0.021 seconds

Kinematic/dynamic modeling and analysis of a 3 degree-of-freedom redundantly actuated mobile robot (세바퀴 여유구동 모바일 로봇의 기구학/동력학 모델링 및 해석)

  • Park, Seung;Lee, Byung-Joo;Kim, Hee-Gook
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.528-531
    • /
    • 1997
  • This paper deals with the kinematic and dynamic modeling of a 3 degree-of-freedom redundantly actuated mobile robot for the purpose of analysis and control. Each wheel is driven by two motors for steering and driving. Therefore, the system becomes force-redundant since the number of input variable is greater than the number of output variable. The kinematic and dynamic models in terms of three independent joint variables are derived. Also, a load distribution method to determine the input loads is introduced. Finally we demonstrate the feasibility of the proposed algorithms through simulation.

  • PDF

A Study on an Intelligent Motion Control of Mobile Robot Based on Iterative Learning for Smart Factory

  • Im, Oh-Duck;Kim, Hee-Jin;Kang, Da-Bi;Kim, Min-Chan;Han, Sung-Hyun
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.25 no.4_1
    • /
    • pp.521-531
    • /
    • 2022
  • This study proposed a new approach to intelligent control of a mobile robot system by back properpagation based on multi-layer neural network. A experiment result is given in which some artificial assumptions about the linear and the angluar velocities of mobile robots from recent literature are dropped. In this study, we proposed a new thinique to impliment the real time conrol of he position and velocity of mobile robots. With the proposed control techinique, mobile robots can now globally follow any path such as a straight line, a circle and the path approaching th toe origin using proposed controller. Computer simulations are presented, which confirm the effectiveness of the proposed control algorithm. Moreover, practical experimental results concerning the real time control are reported with several real line constraints for mobile robots with two wheel driving.

A Study on Real-Time Autonomous Travelling Control of Two-wheel Driving Robot Based Ultrasonic Sensors (초음파센서기반 2휠구동로봇의 실시간 자율주행제어에 관한연구)

  • hwang, Won-Jun;Park, In-Man;Kang, Un-Wook;Han, Sung-Hyun
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.17 no.3
    • /
    • pp.151-169
    • /
    • 2014
  • We propose a new technique for autonomous navigation and travelling of mobile robot based on ultrasonic sensors through the narrow labyrinth that leave only distance of a few centimeters on each side between the guides and the robot. In our current implementation the ultrasonic sensor system fires at a rate of 100 ms, that is, each of the 8 sensors fires once during each 100 ms interval. This is a very good firing rate, implemented here for optimal performance. This paper presents an extensively tested and verified solution to the problem of obstacle avoidance. Our solution is based on the optimal placement of ultrasonic sensors at strategic locations around the robot. Both the sensor location and the associated navigation algorithm are defined in such a way that only the accurate radial sonar data is used for accurate travelling.

Improvement of Energy Efficiency for an Omnidirectional Mobile Robot with Steerable Omnidirectional Wheels (조향 가능한 전방향 바퀴를 갖는 전방향 이동로봇의 에너지 효율 개선)

  • Song Jae-Bok;Kim Jeong-Keun
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.11 no.8
    • /
    • pp.696-703
    • /
    • 2005
  • Since most autonomous mobile robots are powered by a battery, it is important to increase the continuous operating time without recharging. This can be achieved by improving the energy efficiency of a mobile robot, but little research on energy efficiency has been performed. This paper proposes two methods for improving the energy efficiency of an omnidirectional mobile robot.. One method is to realize a continuously variable transmission (CVT) by adopting the mechanism of steerable omnidirectional wheels. The other is the proposed steering algorithm in which wheel arrangement of the mobile robot is continuously adjusted so as to obtain the maximum energy efficiency of the motors during navigation. In addition, new omnidirectional wheels which can be transformed to the conventional wheels depending on the driving conditions are proposed to compensate for less efficient omnidirectional drive mode. Various tests show that motion control of the OMR-SOW works satisfactorily and the proposed steering algorithm for CVT can provide higher energy efficiency than the algorithm using a fixed steering angle. In addition, it is shown that the differential drive mode can give better energy efficiency than the omnidirectional drive mode.

Indoor Localization for Mobile Robot using Extended Kalman Filter (확장 칼만 필터를 이용한 로봇의 실내위치측정)

  • Kim, Jung-Min;Kim, Youn-Tae;Kim, Sung-Shin
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.18 no.5
    • /
    • pp.706-711
    • /
    • 2008
  • This paper is presented an accurate localization scheme for mobile robots based on the fusion of ultrasonic satellite (U-SAT) with inertial navigation system (INS), i.e., sensor fusion. Our aim is to achieve enough accuracy less than 100 mm. The INS consist of a yaw gyro, two wheel-encoders. And the U-SAT consist of four transmitters, a receiver. Besides the localization method in this paper fuse these in an extended Kalman filter. The performance of the localization is verified by simulation and two actual data(straight, curve) gathered from about 0.5 m/s of driving actual driving data. localization methods used are general sensor fusion and sensor fusion through Kalman filter using data from INS. Through the simulation and actual data studies, the experiment show the effectiveness of the proposed method for autonomous mobile robots.

Development of Autonomous Algorithm Using an Online Feedback-Error Learning Based Neural Network for Nonholonomic Mobile Robots (온라인 피드백 에러 학습을 이용한 이동 로봇의 자율주행 알고리즘 개발)

  • Lee, Hyun-Dong;Myung, Byung-Soo
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.21 no.5
    • /
    • pp.602-608
    • /
    • 2011
  • In this study, a method of designing a neurointerface using neural network (NN) is proposed for controlling nonholonomic mobile robots. According to the concept of virtual master-slave robots, in particular, a partially stable inverse dynamic model of the master robot is acquired online through the NN by applying a feedback-error learning method, in which the feedback controller is assumed to be based on a PD compensator for such a nonholonomic robot. The NN for the online feedback-error learning can composed that the input layer consists of six units for the inputs $x_i$, i=1~6, the hidden layer consists of two hidden units for hidden outputs $o_j$, j=1~2, and the output layer consists of two units for the outputs ${\tau}_k$, k=1~2. A tracking control problem is demonstrated by some simulations for a nonholonomic mobile robot with two-independent driving wheels. The initial q value was set to [0, 5, ${\pi}$].