• 제목/요약/키워드: Two Wheel Driving Robot

검색결과 36건 처리시간 0.024초

영구자석 바퀴를 이용한 이동 로봇의 조향 시스템 연구 (A Study On Steering System for Mobile Robot with Permanent Magnet Wheels)

  • 김진각;이화조;한승철
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2006년도 춘계학술대회 논문집
    • /
    • pp.311-312
    • /
    • 2006
  • In this paper, steering systems for mobile robot with permanent magnet wheels are discussed. The mobile robot with permanent magnet wheels can have three different types of steering and driving configurations; two-wheels, three-wheels, four-wheels. By a Two-WD(Wheel Driving) system, driving and steering characteristics are controlled by ratio of each wheel speeds. Three-WD system is steered by a front wheel and driven by rear wheels. Four-WD system has better stability than two wheel system. Usually the permanent magnet wheel has nearly none slip. Thus turning radius of the mobile robot with three-WD and four-WD System will be increased and the steering and driving system will be complicated. To solve this problem, two magnet wheels with two dummy wheels are used in this study. fuming radius of the developed mobile robot is small and the structure of the robot is simple. It is possible to move forward, backward, to turn left and right, and to rotate freely with two-WD. This study proved that two-WD system is very suitable fur the mobile robot with permanent magnet wheels.

  • PDF

두 팔을 가지는 변형 가능한 구형로봇 (A Deformable Spherical Robot with Two Arms)

  • 안성수;김영민;이연정
    • 제어로봇시스템학회논문지
    • /
    • 제16권11호
    • /
    • pp.1060-1067
    • /
    • 2010
  • In this paper, we present a new type of spherical robot having two arms. This robot, called KisBot, mechanically consists of three parts, a wheel-shaped body and two rotating semi-spheres. In side of each semi-sphere, there exists an arm which is designed based on slider-crank mechanism for space efficiency. KisBot has hybrid types of driving mode: rolling and wheeling. In the rolling mode, the robot folds its arms through inside of itself and uses them as pendulum, then the robot works like a pendulum-driven robot. In the wheeling mode, two arms are extended from inside of the robot and are contacted to the ground, then the robot works like a one-wheel car. The Robot arms can be used as a brake during rolling mode and add friction to the robot for climbing a slope during wheeling mode. We developed a remote controlled type robot for experiment. It contains two DC motors which are located in the center of each semi-sphere for main propulsion, two RC motors for each arm operation, speed controllers for each semi-sphere, batteries for main power source, and other mechanical components. Experiments for the rolling and wheeling mode verify the hybrid driving ability and efficiency of the our proposed spherical robot.

퍼지추론 및 뉴럴네트워크 기반 2휠구동 로봇의 주행제어알고리즘 개발 (Development of Travelling Control Algorithm Based Fuzzy Perception and Neural Network for Two Wheel Driving Robot)

  • 강언욱;양준석;차보남;박인수
    • 한국산업융합학회 논문집
    • /
    • 제17권2호
    • /
    • pp.69-76
    • /
    • 2014
  • This paper proposes a new approach to the design of cruise control system of a mobile robot with two drive wheel. The proposed control scheme uses a Gaussian function as a unit function in the fuzzy neural network, and back propagation algorithm to train the fuzzy neural network controller in the framework of the specialized learning architecture. It is proposed a learning controller consisting of two neural network-fuzzy based on independent reasoning and a connection net with fixed weights to simply the neural networks-fuzzy. The performance of the proposed controller is shown by performing the computer simulation for trajectory tracking of the speed and azimuth of a mobile robot driven by two independent wheels.

모바일-매니퓰레이터 구조 로봇시스템의 안정한 모션제어에 관한연구 (A Study on Stable Motion Control of Mobile-Manipulators Robot System)

  • 박문열;황원준;박인만;강언욱
    • 한국산업융합학회 논문집
    • /
    • 제17권4호
    • /
    • pp.217-226
    • /
    • 2014
  • Since the world has changed to a society of 21st century high-tech industries, the modern people have become reluctant to work in a difficult and dirty environment. Therefore, unmanned technologies through robots are being demanded. Now days, effects such as voice, control, obstacle avoidance are being suggested, and especially, voice recognition technique that enables convenient interaction between human and machines is very important. In this study, in order to conduct study on the stable motion control of the robot system that has mobile-manipulator structure and is voice command-based, kinetic interpretation and dynamic modeling of two-armed manipulator and three-wheel mobile robot were conducted. In addition, autonomous driving of three-wheel mobile robot and motion control system of two-armed manipulator were designed, and combined robot control through voice command was conducted. For the performance experiment method, driving control and simulation mock experiment of manipulator that has two-armed structure was conducted, and for experiment of combined robot motion control which is voice command-based, through driving control, motion control of two-armed manipulator, and combined control based on voice command, experiment on stable motion control of voice command-based robot system that has mobile-manipulator structure was verified.

메카넘 바퀴 볼 로봇의 자세제어 및 주행 (Balancing and Driving Control of a Mecanum Wheel Ball Robot)

  • 황승익;하휘명;이장명
    • 제어로봇시스템학회논문지
    • /
    • 제21권4호
    • /
    • pp.336-341
    • /
    • 2015
  • This paper proposes a balancing and driving control system for a Mecanum wheel ball robot which has a two axis structure and four motors. The inverted pendulum control method is adopted to maintain the balance of the ball robot while it is driving. For the balancing control, an anon-model-based controller has been designed to control the device simply without the need of a complex formula. All the gains of the controller are heuristically adjusted during the experiments. The tilt angle is measured by IMU sensors, which is used to generate the control input of the roll and pitch controller to make the tilt angle zero. For the driving control, the PID control algorithm has been adopted with angles of the wheels and the encoder data. The performance of the designed control system has been verified through the real experiments with the suggested ball robot.

메카넘 휠을 이용한 볼-봇의 슬립률 감소와 균형 및 주행제어 (Slip Ratio Reduction and Moving Balance Control of a Ball-bot using Mecanum Wheel)

  • 박영식;김수정;변수경;이장명
    • 로봇학회논문지
    • /
    • 제10권4호
    • /
    • pp.186-192
    • /
    • 2015
  • This paper proposes a robust balance and driving control for omni-directional ball robot(generally called ball-bot) with two axis mecanum wheel. Slip between ball and mecanum wheel actuator inevitably occurs along diagonal axis due to its instantaneous strong torque. In order to reduce and saturate slip, exact distance calculation scheme especially for rotational movement is essential. So this research solved Euler-Lagrange dynamics for proposed two axis ball robot based on practical mechanical modeling. Robust balance control was carried out by PID controller according to the pitch and roll angles of ball robot by using sensor fusion between AHRS and wheel encoder. Proposed PID controller enhances stability by reducing steady state error and settling time. Proposed slip control algorithm for omni-directional ball robot has been demonstrated by experiments for balance control and arbitrary driving control.

엔터테인먼트용 로봇차량의 제작과 균형 제어 (Implementation and Balancing Control of a Robotic Vehicle for Entertainment)

  • 김현욱;조성택;정슬
    • 제어로봇시스템학회논문지
    • /
    • 제20권7호
    • /
    • pp.736-740
    • /
    • 2014
  • This paper presents the driving and balancing control of an entertainment robot vehicle that can carry two persons. The entertainment robot vehicle is built with the purpose of carrying passengers with two wheels. It has two driving modes: a balancing mode with two wheels and a driving mode with three wheels. Three cases of different modes are verified by experimental studies. Firstly, a driving mode is tested with two passengers to check the functionality of the vehicle. Secondly, the balancing control performance is tested. Lastly, the balancing control performance under the disturbance is tested.

슬라이딩 메커니즘을 이용한 서비스 로봇의 밸런싱 자세의 안정화에 대한 실험연구 (An Experimental Study on Balancing Stabilization of a Service Robot by Using Sliding Mechanism)

  • 이승준;정슬
    • 제어로봇시스템학회논문지
    • /
    • 제19권3호
    • /
    • pp.233-239
    • /
    • 2013
  • This paper presents the analysis and control of the position of the COG (Center of Gravity) for a two-wheel balancing robot. The two-wheel balancing robot is required to maintain balance by driving two wheels only. Since the robot is not exactly symmetrical and its dynamics is changing with respect to moving parts, robust balancing control is difficult. Balancing performance becomes difficult when two arms hold a heavy object since the center of gravity is shifted out of the wheel axis. Novel design of a sliding waist mechanism allows the robot to react against the shift of the COG by moving the whole upper body to compensate for the imbalance of the mass as a counter balancer. To relocate the COG position accurately, the COG is analyzed by force data measured from two force sensors. Then the sliding COG mechanism is utilized to control the sliding waist position. Experimental studies are conducted to confirm the proposed design and method.

2휠 구동 모바일 로봇의 정밀 위치제어 (A Precise Position Control of Mobile Robot with Two Wheels)

  • 정양근;백승학
    • 한국산업융합학회 논문집
    • /
    • 제18권2호
    • /
    • pp.67-74
    • /
    • 2015
  • Two-wheeled driying mobild robots are precise controlled in terms of linear contol methods without considering the nonlinear dynamical characteristics. However, in the high maneuvering situations such as fast turn and abrupt start and stop, such neglected terms become dominant and heavy influence the overall driving performance. This study describes the nonlinear optimal control method to take advantage of the exact nonlinear dynamics of the balancing robot. Simulation results indicate that the optimal control outperforms in the respect of transient performance and required wheel torques. A design example is suggested for the state matrix that provides design flexibility in the control. It is shown that a well-planned state matrix by reflecting the physics of a balancing robot greatly conrtibutes to the driving performance and stability.

SDRE 기법을 이용한 이륜 밸런싱 로봇의 비선형 최적제어 (SDRE Based Nonlinear Optimal Control of a Two-Wheeled Balancing Robot)

  • 김상태;권상주
    • 제어로봇시스템학회논문지
    • /
    • 제17권10호
    • /
    • pp.1037-1043
    • /
    • 2011
  • Two-wheeled balancing mobile robots are currently controlled in terms of linear control methods without considering the nonlinear dynamical characteristics. However, in the high maneuvering situations such as fast turn and abrupt start and stop, such neglected terms become dominant and greatly influence the overall driving performance. This paper addresses the SDRE nonlinear optimal control method to take advantage of the exact nonlinear dynamics of the balancing robot. Simulation results indicate that the SDRE control outperforms LQR in the respect of transient performance and required wheel torques. A design example is suggested for the state matrix that provides design flexibility in the SDRE control. It is shown that a well-planned state matrix by reflecting the physics of a balancing robot greatly contributes to the driving performance and stability.