• 제목/요약/키워드: Two Stage Hydraulic Valve

검색결과 9건 처리시간 0.02초

전자 유압식 비례 교축 제어 밸브의 특성 (Static and Dynamic Characteristics of Electro - hydraulic Proportional Throttle Control Valve)

  • 오인호;이일영
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제17권4호
    • /
    • pp.87-99
    • /
    • 1993
  • Nowadays, the cartridge valve can be controlled proportionally in remote place by adopting proportional solenoid and it becomes widely used as control component in hydraulic systems. Especially, multi stage proportional valve is attractive because it consumes less input power though its characteristics might slightly be defected. But, the system parameter should be carefully chosen to obtain optimistic characteristics. This study concerning three stage proportional throttle control valve is purposed to examine the influences of paameters to the dynamic characteristics. The typical transient and frequency responses of proportional throttle control valve were inspected through the experiments and compared to those derived from the theoritical analyses. And it was confirmed that the analyses are appropriate. Then the influences of various system parameters to the dynamic characteristics were examined by means of simulations. For the analyses, the basic equations derived from lumped model were linearized and the linearized equations were transformed to the transfer functions between inputs and outputs. Then the transient responses and frequency responses were obtained from transfer functions. 1. It is appropriate to estimate the dynamic characteristics of valve which has relatively sophisticated structure by means of system analyses using linearized equations. 2. Though the valve has two pilot stages, fairly good characteristics can be obtained by carefully choosing system parameters. 3. Main valve very quickly follows the movement of second pilot valve when the parameters of main valve(the oil supply passage and discharge passage fpr second pilot valve) are appropriately chosen.

  • PDF

유전자 알고리즘을 이용한 2단 릴리프 밸브의 최적설계 (An Optimal Design of a two stage relief valve by Genetic Algorithm)

  • 김승우;안경관;이병룡
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2002년도 추계학술대회 논문집
    • /
    • pp.501-506
    • /
    • 2002
  • In this study, a novel systematic design procedure by Genetic Algorithm of a two stage relief valve is proposed. First of all. a mathematical model describing the dynamics of a balanced piston type relief valve has been derived. Governing equations such as dynamic equations for the main spool and the pilot spool and flow equations for each orifice are established. The mathematical model is verified by comparing the results of simulation with that of experiments. Furthermore, influences of the parameters on the dynamic characteristics of a relief valve have been investigated by simulation of the proposed model. Major design parameters on the valve response are determined, which affect the system response significantly. And then, using the determined parameters, the optimization of the two stage relief valve by Genetic Algorithm, which is a random search algorithm can find the global optimum without converging local optimum, is performed. The optimal design process of a two stage relief valve is presented to determine the major design parameters. Fitness function reflects the changing pressure according to parameters. It is shown that the genetic algorithms satisfactorily optimized the major design parameters of the two stage relief valve.

  • PDF

파일럿 스풀이 주 스풀에 동심 내장된 2단 방향제어밸브의 기초적 특성 (Basic Characteristics of a Two Stage Directional Control Valve with Pilot Spool Assembled in Main Spool Coaxially)

  • 이일영;손제목
    • 동력기계공학회지
    • /
    • 제14권6호
    • /
    • pp.102-108
    • /
    • 2010
  • In this study, the authors investigate the basic characteristics of a two stage directional control valve with pilot spool assembled in main spool coaxially. The step response characteristics and effects of major design parameters' values on valve performances arc clarified through numerical simulations. In addition, the authors examined the possibility of applying the object valve for this study as a proportional control valve. Based on the numerical simulation results, new design values for the reformed design as a proportional control valve were suggested.

굴삭기 IMV용 비례 유량제어밸브 정특성 해석 (Static Analysis of Dedicated Proportional Flow Control Valve for IMV)

  • 정규홍
    • 드라이브 ㆍ 컨트롤
    • /
    • 제15권4호
    • /
    • pp.39-47
    • /
    • 2018
  • Recently, as environmental regulations for earth-moving equipment have been tightening, advanced systems such as electronic control, have been introduced for energy savings. An IMV (Independent Metering Valve) consisting of four 2-way valves, is an electro-hydraulic control systems that provides more flexible controllability, and potential for energy savings in excavators, when compared to the conventional 4-way spool valve system. To fully maximize use of an IMV, the bi-directional flow control valve that can regulate a large amount of flow in both directions, should be adopted. The hydraulic circuit of an IMV applied to an excavator from an overseas construction equipment company, reveals the flow control valve with the compound of proportional solenoid valve for first stage, and 2-way spool valve for the second stage. Moreover, the two spools are interconnected by a feedback spring, presumed to compensate for flow force acting on the second stage spool. This paper addresses the static analysis of flow control valve in an IMV to investigate the improvement of robustness, against flow force by the feedback spring. From the steady-state analysis of flow control valve model, it can be concluded that the feedback spring facilitates maintaining linearity of spool displacement for control input, and relatively constant flow for load disturbance.

파일럿형 압력 릴리프 밸브의 최적설계 (An Optimal Design of pilot type relief valve by Genetic Algorithm)

  • 김승우;안경관;양순용;이병룡;윤소남
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2003년도 춘계학술대회 논문집
    • /
    • pp.1006-1011
    • /
    • 2003
  • In this study, a novel systematic design procedure by Genetic Algorithm of a two stage relief valve is proposed. First of all, a mathematical model describing the dynamics of a balanced piston type relief valve has been derived. Governing equations such as dynamic equations for the main spool and the pilot spool and flow equations for each orifice are established. The mathematical model is verified by comparing the results of simulation with that of experiments. Furthermore, influences of the parameters on the dynamic characteristics of a relief valve have been investigated by simulation of the proposed model. Major design parameters on the valve response are determined, which affect the system response significantly. And then, using the determined parameters, the optimization of the two stage relief valve by Genetic Algorithm, which is a random search algorithm can find the global optimum without converging local optimum, is performed. The optimal design process of a two stage relief valve is presented to determine the major design parameters. Fitness function reflects the changing pressure according to parameters. It is shown that the genetic algorithms satisfactorily optimized the major design parameters of the two stage relief valve.

  • PDF

IMV 비례 유량제어밸브 정특성 선형해석 (Liner Analysis of IMV Proportional Flow Control Valve Static Characteristics)

  • 정규홍
    • 드라이브 ㆍ 컨트롤
    • /
    • 제16권4호
    • /
    • pp.56-64
    • /
    • 2019
  • Recently, as the environmental regulation for earth moving equipment has been tightened, advanced systems using electronic control have been introduced for energy savings. An IMV(Independent Metering Valve), which consists of four 2-way valves, is one of the electro-hydraulic control systems that provides more flexible controllability and potential for energy savings in excavators, when compared to the conventional 4-way spool valve system. To fully realize an IMV, a two-stage bi-directional flow control valve which can regulate the large amount of flow in both directions, should be developed in advance. A simple design that allows proportional flow control to apply the pilot pressure from the current-controlled solenoid to the spring loaded flow control spool and thus valve displacement, is proportional to the solenoid current. However, this open-loop type valve is vulnerable to flow force which directly affects the valve displacement. Force feedback servo of which the position loop is closed by the feedback spring which interconnects the solenoid valve and flow control spool, could compensate for the flow force. In this study, linearity for the solenoid current input and robustness against load pressure disturbance is investigated by linear analysis of the static nonlinear equations for the IMV proportional flow control valve with feedback spring. Gains of the linear system confirm the performance improvement with the feedback spring design.

박판 페어 하이드로포밍 공정의 성형성 향상을 위한 다단 성형 공정의 개발 (Improvement of Formability in the Multi-Stage Sheet Pair Hydroforming Process)

  • 김태정;정창균;양동열;한수식
    • 소성∙가공
    • /
    • 제12권8호
    • /
    • pp.702-709
    • /
    • 2003
  • In the automotive industry hydroforming of sheet metal pairs have received special attention because materials for various sheet metal components of vehicles have changed into the high strength steel, aluminum, and titanium blank having low formability. Uniform deformation over the whole region is a main advantage in the sheet hydroforming process. Because upper and lower parts could be produced simultaneously with one tool, hydroforming of sheet metal pairs is competitive in reducing the lead-time and development cost. In this paper, the multi-stage hydroforming process of sheet pair is proposed in order to increase the formability of a structural part like the oil pan shape. The upper die for forming oil pan shape is divided into two parts which can move separately. By the finite element simulation, the design parameters such as geometry of the tool and detailed specification of hydraulic pump were calculated and verified. For the strict comparison of the proposed process, the blank holding force is kept to a constant value during deformation by hydraulic valve. The deformed shape and strain distribution of the manufactured parts with the proposed process are compared with the results of simulation. In the multi-stage hydroforming process, maximum thickness strain was improved by more than 30 percent.

항공우주 비행체 정적구조시험용 하중제한밸브 부품 형상 분석 (Geometrical Analysis on Parts of Load Limit Valve for Static Structural Test of Aerospace Flight Vehicles)

  • 심재열
    • 한국항공우주학회지
    • /
    • 제47권9호
    • /
    • pp.607-616
    • /
    • 2019
  • 항공우주비행체 정적구조시험을 위한 과하중 방지를 위해 사용되는 하중제한밸브(LLV)의 파일럿 스테이지의 주요 구성품들에 대한 자유물체도 분석을 수행하였다. 이 분석을 통하여 유압작동기의 동일한 힘에서 일관성있게 포펫 개방되도록 하기 위해서는 파일럿스테이지에 있는 두 포펫의 직경비($(D_2)^{ten}/D_2)^{comp}$)가 작동기의 피스톤 면적비($A_{comp}/A_{ten}$)와 동일해야만 한다는 것을 보였다. 실험실에서 외산으로 수입하여 사용하고 있는 4개의 서로 다른 하중제한밸브의 포펫들 형상을 측정하고 대응되는 4개의 다른 용량을 갖는 유압작동기들의 피스톤 면적비들로부터 위의 분석결과가 타당함을 확인하였다. 두 개의 다른 파일럿스테이지로 수행한 "조절자 분해능시험들"의 결과들로부터 조절자 각 회전에서 얻은 Fi(포펫개방 순간의 작동기 힘)의 최대 표준편차는 각 평균값으로부터 0.3KN이고 표준편차를 각 평균값으로 나눈 무차원값으로 분석하면 최대편차는 3.7%이다. 이 결과로 부터 동일 포펫 직경비를 갖는 두 개의 파일럿스테이지들의 포펫은 각 조절자 회전에 대해 Fi/(평균 Fi) 값이 +/- 3.7% 범위에서 일관성 있게 개방되고 있음을 확인하였다. 위의 편차는 포펫 O-링의 마찰력으로부터 유발되는 것임을 보였다. 부가적으로 파일럿스테이지의 다른 주요부품인 포펫 스프링과 조절자의 주요설계인자들도 식별하였고 이들의 결정과정도 본 연구에서 보였다.

양방향 3단 IMV 개발을 위한 시뮬레이션 해석 (Simulation Analysis for the Development of 3 Stage IMV)

  • 허준영
    • 드라이브 ㆍ 컨트롤
    • /
    • 제17권2호
    • /
    • pp.55-62
    • /
    • 2020
  • There are two types of IMV for MCV, the spool type and the poppet type. The spool type is used in the existing excavator MCV and easily meets large-capacity flow conditions, but has a flow force problem which affects the spool control. The poppet type stably blocks the flow and has excellent rapid response. However, the larger the capacity, the larger the diameter of the poppet needed, requiring a strong spring to withstand the oil pressure. In this study, a bi-directional three-stage IMV for MCV that can be used in medium and large hydraulic excavators was proposed. This is a poppet type, enabling bi-directional flow control and resolves the problem of proportional solenoid suction force limitation. To investigate the validity of the proposed valve, the system was mathematically modeled and the static and dynamic characteristics were investigated through the simulation using commercial software. It has been concluded that the reverse flow is possible in a regeneration circuit and that the proposed IMV can be used to perform various excavation modes.