• 제목/요약/키워드: Two Spot Welding

검색결과 82건 처리시간 0.021초

차체 플러그 용접품질에 영향을 미치는 아크 위치에 대한 실험적 기초 연구 (A Study on the Arc Position which Influence on Quality of Plug Welding in the Vehicle Body)

  • 이경민;김재성;이보영
    • Journal of Welding and Joining
    • /
    • 제30권3호
    • /
    • pp.66-70
    • /
    • 2012
  • Welding is an essential process in the automotive industry. Most welding processes that are used for auto body is spot welding. And $CO_2$ arc welding is used in a small part. In production field, $CO_2$ arc welding process is decreased and spot welding process is increased due to welding quality is poor and defects are occurred in $CO_2$ arc welding process frequently. But $CO_2$ arc welding process should be used at robot interference parts and closed parts where spot welding couldn't. $CO_2$ welding is divided into lap welding and plug arc spot welding. In case of plug arc spot welding, burn through and under fill were caused in various welding environment such as different thickness combinations of base metal, teaching point, over the two steps welding and inconsistent voltage/current. It makes some problem like poor quality of welding area and decrease the productivity. In this study, we will evaluate the effect of teaching point through the weld pool behavior and bead geometry in the arc spot welding at the plut hole. Welding position is horizontal position. And galvanized steel sheet of 2.0mm thickness that has plug hole of 6mm diameter was used. Teaching point was changed by center, top, bottom, left and right of the plug hole. At each condition, the phenomenon of weld pool behavior was confirmed using a high-speed camera. As the result, we find the center of plug hole is the most optimal teaching point. In the other teaching point, under fill was occurred at the plug hole. This phenomenon is caused by gravity and surface tension. For performance of arc spot welding at the plug hole, the teaching condition should be controlled at a center of plug hole.

가열금형을 사용하는 강철과 알루미늄 이종금속판재의 전기저항 이중스폿용접 (Electric Resistance Double Spot Welding Process of Dissimilar Metal Plates of Steel and Aluminum by Using Heating Dies)

  • 김태현;;진인태
    • 소성∙가공
    • /
    • 제27권1호
    • /
    • pp.37-47
    • /
    • 2018
  • In this paper, a double spot welding process, utilizing electric resistance heating dies, is suggested for the spot welding of dissimilar metal plates for drawing and concurrent spot welding. This double welding process has two heating methods for the fusion welding at the interfacial zone between steel and aluminum plates, such as heating method by thermal conduction of electric resistance by welding current induced to heating dies, and heating method by electric resistance between contacted surfaces of two plates by welding current induced to copper electrode. This double welding process has welding variables such as each current induced in heating dies and in copper electrode, outer diameters of heating dies, and edge shape of copper electrode. Experiments for current conditions in welding process should be demanded in order to get successful welding strength. It was known that the welding strength could be reached to the value demanded on industry fields under such welding conditions as heating dies of outer ring dia.12mm contacted on steel plate, as heating dies of outer ring dia. 14mm contacted on aluminum plate, and as copper electrode of dia. 6.0mm, and as 3 times continuous heating method by $1^{st}$ current of 11 kA(9cycle), $2^{nd}$ current 11 kA(60cycle), $3^{rd}$ current 7 kA(60cycle) applied in steel heating dies and copper electrodes, flat edge of copper electrode, for double spot welding process of dissimilar metal plates of steel and aluminum of 1.0 mm thickness.

스폿용접된 자동차 차체용 알루미늄 박판의 피로균열진전의 파괴역학적 평가 (A fracture mechanics evaluation on the fatigue crack propagation at spot welded aluminum joint in passenger car body)

  • 박인덕;남기우;강석봉
    • 한국해양공학회지
    • /
    • 제11권3호
    • /
    • pp.20-28
    • /
    • 1997
  • The fatigue crack propagation properties and fatigue life of two kinds of Al body panel for automobile were examined experimentally by using the plate specimen and the single spot welding specimen. The fatigue limit of spot welding specimens was lower than that of a plate specimen. The fatigue limit was similar in two kinds of spot welding specimen. The shape and size of crack propagation were observed and measured on beach mark of fracture surface. The crack propagation of surface crack specimen showed almost same tendency to that of a thick plate as almost semi-elliptical. In spot welding specimen, the fatigue crack occurred in inside surface of nugget area was almost semi-elliptical. The crack growth rate can be explained using equation of stress intensity factors.

  • PDF

유한요소법에 의한 저항 점용접부의 역학적 특성에 관한 연구 (A Study on the Mechanical Behavior of Resistance Spot Welding by Finite Element Method)

  • 방한서;주성민;방희선;차용훈;최병기
    • Journal of Welding and Joining
    • /
    • 제17권5호
    • /
    • pp.77-82
    • /
    • 1999
  • Resistance spot welding process is completed in very short time and there are many factors affecting on the generation of heat. It is difficult to control these experimental factors and monitor distribution of the temperature and stresses in the experimental analysis case. and too much time and expense are required for the experimental trials to fine proper welding condition. So numerical analyses have been attempted steadily, but most numerical analyses on the resistance spot welding are mainly focused on thermal behavior. Therefore, in this paper, the numerical analysis of mechanical behavior as well as heat conduction is carried out for the spot welding process. For this numerical analysis, axial symmetric computer program for the spot welding analysis by F.E.M. has been developed considering heat conduction and thermal elastic-plastic theory. Material properties depending on temperature such as density, heat conductivity, heat expansion coefficient, specific heat, yield stress, elastic modulus, and specific resistance are considered. Using the results of temperature distribution obtained from heat conduction analysis, the thermal elastic-plastic analysis is carried out to clarify mechanical behavior of spot welded specimen. In order to evaluate the effect of residual stresses, numerical analyses are carried out under tension-shear load in two cases respectively; one with residual stress, the other without residual stresses.

  • PDF

알루미늄 판재의 압출점접합공정에 있어서 접합강도에 관한 연구 (A Study on Welding Strength of Extru-Riveting Process of Aluminum Plates)

  • 이정훈;김태현;이문용;진인태
    • 소성∙가공
    • /
    • 제19권8호
    • /
    • pp.460-467
    • /
    • 2010
  • It was studied that two plates of aluminum can be welded by extru-riveting experiments with extru-rivet welding dies, and that the welding strength and metal flow on the welding section were analyzed by computer simulation according to the welding variable such as the diameter of extrusion insert dies. It was known by computer simulation that welding strength on the welding section of plates could be influenced by the diameter of extrusion insert dies. And it was known by experiments that two plates of aluminum can be welded on a spot point on aluminum plate by extru-rivet welding process, and that welding strength is higher and higher if the diameter of extrusion insert die is smaller and smaller, and that welding strength is the highest when diameter of extrusion insert dies is ${\emptyset}4.2$mm in the case that the diameter of rivet is 5 mm, when aluminum 5052 two plates with 1.5 mm thickness and one plate with 3mm thickness for rivet plate are used as welding material.

회전금형을 사용하는 AZ31 마그네슘 합금판재의 전기저항 표면마찰 스폿용접 (Electric Resistance Surface Friction Spot Welding Process of AZ31 Mg Alloy Sheets by Using Rotating Dies)

  • 김태현;;진인태
    • 소성∙가공
    • /
    • 제27권3호
    • /
    • pp.145-153
    • /
    • 2018
  • Magnesium material could be widely used in the automotive industry because of its high strength to weight ratio, but the electric resistance spot welding process of magnesium sheets is difficult because of its low electric resistance and high thermal conduction and thermal expansion. For this reason, an electric resistance surface friction spot welding process using rotating dies is suggested for the spot welding of magnesium metal sheets. This welding method can be characterized by three heating methods: (1) electric resistance heating on contacted surface, (2) surface friction heating by rotating dies, and (3) thermal conduction heating from heated steel electrodes, for the fusion of metal at the interfacial zone between the two magnesium sheets. This welding process also has variables to explore, such as welding currents, diameters of the steel electrode, and rotating dies. It was found that the welding strength could reach industrial requirements by applying a welding current of 11.0kA, with steel electrodes of 12mm diameter, with rotating dies of 4.4 mm diameter, under the condition of a revolution speed of 1200rpm of rotating dies, for the surface friction spot welding process of AZ31 magnesium alloy sheets of 1.4mm thickness.

자동차 차체 패널의 점용접 및 플러그용접 특성에 대한 실험적 분석 (Experimental Study on Spot Weld and Plug Weld of Automotive Body Panel)

  • 권종호;김장훈;이용우
    • 한국자동차공학회논문집
    • /
    • 제24권6호
    • /
    • pp.709-715
    • /
    • 2016
  • This paper presents a comparison of an experimental study on spot and plug welding of an automotive body panel. Spot welding is a common joining technology used in automotive body panel assembly. In automotive body repair, however, plug welding is widely used due to its technical simplicity and cost benefit. Some researchers have focused on the use of spot welding in the manufacturing process, but there has been very little research done with respect to the engineering analysis of the plug welding process. In this study, two kinds of specimens are considered to compare the difference of failure strength between spot weld and plug weld: normal tension and shear tension. The experimental results show, in both normal tension and shear tension, that spot welding has higher failure strength than plug welding. In addition, plug welding is more vulnerable to shear tension than normal tension. This study can be applied to further studies on practical optimization for maintenance and repair of automotive body panels.

팁 선단에 중공이 있는 전극을 이용한 스패터 저감 스폿 용접에 관한 연구 (A Study of Spot Welding Process to Reduce Spatter with the Hollow Tip)

  • 전정상;이세헌
    • Journal of Welding and Joining
    • /
    • 제27권4호
    • /
    • pp.44-48
    • /
    • 2009
  • In automotive company, a lot of researchers have investigated for the spatterless welding process during last two decades. A spatter influences on the product quality such as strength and surface states. In this paper, a hollow tip is proposed for spatterless process. An optimal size of electrode hole is obtained from a weldability evaluation of each hole diameter. Through the cross section analysis, a phenomenon that molten metal moves in the hole which located between two workpiece is observed, and this makes spatterless welding process even though current is higher. Finally, widely acceptable weld area in lobe curve is obtained by using hollow tip as compare with conventional no hollow tip. In this paper, spatterless resistance spot welding with improvement weldability and productivity is proposed by using hollow tip.

고장력강판 및 2층아연도금된 고장력 강판의 점용접성에 관한 연구 (A Study on the Spot Weldability of High Strength Steel Sheet and Two Stories Galvannealed High Strength Steel Sheet)

  • 신현일;강성수
    • Journal of Welding and Joining
    • /
    • 제12권3호
    • /
    • pp.56-62
    • /
    • 1994
  • The spot weldability of high strength steel sheet and two stories galvannealed high strength steel sheet has been studied. 1) Tensile shear strength decreased inversely as welding current increased over 12KA in the case of two stories galvannealed high strength steel sheet. 2) When heat flux input over 12KA, hardening region become narrow in case of two stories galvannealed high strength steel sheet. 3) The size of hardening region affect the strength of nuggets.

  • PDF

점용접된 구조물의 좌굴하중해석 (Buckling Load Analysis of Spot-Welded Structures)

  • 이현철;심재준;안성찬;한근조
    • 한국항만학회지
    • /
    • 제14권1호
    • /
    • pp.87-95
    • /
    • 2000
  • This stability of a plate structure is very crucial problem which results in wrinkle and buckling. In this study, the effect of the pattern of spot-welding points of the two rectangular plates on the compressive and shear buckling load is studied with respect to the thickness, aspect ratio of plates and number of welding spots. Buckling coefficient of the plate not welded was compared with that of two plates with various thickness to extract the effect of thickness. The effect of number of welding spots are studied in two directions, longitudinal and transverse directions. The conclusions obtained were that the reinforcement effect was maximized when the aspect ratio was close to 1.75 at compressive load condition and that the effect of number of welding spots in transverse direction was larger than that in longitudinal direction at shearing load condition.

  • PDF