• Title/Summary/Keyword: Two Speed

Search Result 6,906, Processing Time 0.036 seconds

Application of Light Collecting Probe with High Spatial Resolution to Spark-Ignited Spherical Spray Flames

  • Yang, Young-Joon;Akamatsu, Fumiteru;Katsuki, Masashi
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.11
    • /
    • pp.2058-2065
    • /
    • 2004
  • A light collecting probe named Multi-color Integrated Cassegrain Receiving Optics (MICRO) is applied to spark-ignited spherical spray flames to obtain the flame propagation speed in freely falling droplet suspension produced by an ultrasonic atomizer. Two MICRO probes are used to monitor time-series signals of OH chemiluminescence from two different locations in the flame. By detecting the arrival time difference of the propagating flame front, the flame propagation speed is calculated with a two-point delay-time method. In addition, time-series images of OH chemiluminescence are simultaneously obtained by a high-speed digital CCD camera to ensure the validity of the two-point delay-time method by the MICRO system. Furthermore, the relationship between the spray properties measured by phase Doppler anemometer (PDA) and the flame propagation speed are discussed with three different experimental conditions by changing the fuel injection rate. It was confirmed that the two-point delay-time method with two MICRO probes is useful and convenient to obtain the flame propagation speed and that the flame propagation speed depends on the spray properties.

Simultaneous Control of Cutting Force and Position Using Two Degree-of- Freedom Controller in CNC Ball-end Milling Process (2자유도 제어기를 이용한 CNC볼엔드밀링 공정에서 절삭력과 위치의 동시제어)

  • 양호석;심영복;이건복
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2002.04a
    • /
    • pp.536-542
    • /
    • 2002
  • There are two important variables in machining process control, which are feed and cutting speed. In this work, a two degree-of-freedom controller is designed and implemented to achieve on-line cutting force control and position control based on the modelling of cutting process dynamics which are established through step response test. Two schemes are proposed and implemented. The first is feed control under the constant spindle speed and spindle speed control under the constant feed speed. The second is a simultaneous control of feed and spindle speed. The last performs a position control under the constant cutting force. Those are confirmed to work properly. Especially the latter shows a faster response.

  • PDF

Characteristics of Propagating Tribrachial Flames in Counterflow

  • Ko, Young-Sung;Chung, Tae-Man;Chung, Suk-Ho
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.12
    • /
    • pp.1710-1718
    • /
    • 2002
  • The effect of fuel concentration gradient on the propagation characteristics of tribrachial (or triple) flames has been investigated experimentally in both two-dimensional and axisymmetric counterflows. The gradient at the stoichiometric location was controlled by the equivalence ratios at the two nozzles; one of which is maintained rich, while the other lean. Results show that the displacement speed of tribrachial flames in the two-dimensional counterflow decreases with fuel concentration gradient and has much larger speed than the maximum speed predicted previously in two-dimensional mixing layers. From an analogy with premixed flame propagation, this excessively large displacement speed can be attributed to the flame propagation with respect to burnt gas. Corresponding maximum speed in the limit of small mixture fraction gradient was estimated and the curvefit of the experimental data substantiates this limiting speed. As mixture fraction gradient approaches zero, a transition occurs, such that the propagation speed of tribrachial flame approaches stoichiometric laminar burning velocity with respect to burnt gas. Similar results have been obtained for tribrachial flames propagating in axisymmetric counterflow.

Characteristics of Propagating Tribrachial Flames in Counterflow (대향류 유동장에서 삼지 화염 전파 특성에 관한 연구)

  • Chung, Tae-Man;Ko, Young-Sung;Chung, Suk-Ho
    • Proceedings of the KSME Conference
    • /
    • 2000.04b
    • /
    • pp.422-427
    • /
    • 2000
  • Propagation characteristics of tribrachial flames have been investigated experimentally in both two-dimensional and axisymmetric counterflows. Mixture fraction gradient at stoichiometric location is controlled by varying equivalence ratios at the two nozzles, one of which maintains rich while the other lean premixture. Tribrachial flames propagating through these mixtures are investigated. The propagation speed of tribrachial flames in two-dimensional counterflow decreases with fuel concentration gradient and has much higher speed than the maximum speed predicted previously in two-dimensional mixing layers. From an analogy with premixed flame propagation, this excessively large propagation speed can be attributed to the tribrachial flame propagating with respect to burnt gas. Corresponding maximum speed in the limit of small mixture fraction gradient is estimated and extrapolated experimental results substantiate this limiting speed. As mixture fraction gradient approaches zero, a transition in propagation characteristics occurs, such that the propagation speed of tribrachial flame approaches stoichiometric laminar burning velocity with respect to burnt gas. Similar behavior has been obtained for tribrachial flames propagating in axisymmetric counterflow.

  • PDF

Attitude Control of Spacecraft by Two Variable-Speed Control Moment Gyros (2개의 가변속 제어모멘트자이로를 이용한 인공위성의 자세제어)

  • Jin, Jaehyun
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.11
    • /
    • pp.1027-1033
    • /
    • 2015
  • For the attitude control of spacecraft, two variable-speed control moment gyros are proposed as main actuators in the article. Since a variable-speed control moment gyro (VSCMG) makes two control torques (gyroscopic torque and reaction torque), two VSCMGs are sufficient for controlling 3-axes attitude. Additionally, there are no singular conditions for two non-parallel VSCMGs. Since gyroscopic torque is usually much greater than reaction torque, the control performances of approximately 3 axes may not be the same. However, several missions can be accomplished by controlling two axes. For such missions, a selective axes control method is proposed. The method selects two axes for a certain task and controls the attitude of the selected axes. For the remaining axis, angular speed is controlled for stabilization. A hardware-in-the-loop simulation has been used to test VSCMG modules and to verify the proposed method. Two VSCMGs can be alternative actuators for small satellites.

Relationships Between Average Travel Speed, Time-Delayed Rate, and Volume on Two-lane Highways with Simulation Data (2차로도로 평균 통행속도-총지체율-교통량 관계 곡선 재정립)

  • Moon, Jae-Pil;Kim, Yong-Seok
    • International Journal of Highway Engineering
    • /
    • v.14 no.6
    • /
    • pp.131-138
    • /
    • 2012
  • PURPOSES : Two-lane highways have one lane in each direction, and lane changing and passing maneuvers take place in the opposing lane depending on the availability of passing sight distance. 2001 Korea Highway Capacity Manual (KHCM) is classified into two classes of two-lane highways (Type I, II), and average travel speed and time-delayed rate are used as measures of effectiveness (MOEs). However, since existing two-lane highways have both uninterrupted and interrupted traffic flow-system elements, a variety of free-flow speeds exhibits in two-lane highways. In addition, it is necessary to check if the linear-relationship between volumes and time-delayed rate is appropriate. Then, this study is to reestablish the relationship between average travel speed, time-delayed rate, and flow. METHODS : TWOPAS model was selected to conduct this study, and the free-flow speeds of passenger cars and the percentage of following vehicles observed in two-lane highways were applied to the model as the input. The revised relationships were developed from the computer simulation. RESULTS : In the revised average travel speed vs. flow relationship, the free-flow speed of 90km/h and 70km/h were added. It shows that the relationship between time delayed-rate and flow appeared to be appropriate with the log-function form and that there was no difference in time-delayed rate between the free flow speeds. In addition to revise the relationships, the speed prediction model and the time-delayed rate prediction model were also developed. CONCLUSIONS : The revised relationships between average travel speed, time-delayed rate, and flow would be useful in estimating the Level of Service(LOS) of a two-lane highway.

Cutting Force Control Using A Two Degree-of-Freedom Controller in Ball-end Milling Processes (CNC 볼엔드밀링 공정에서 2자유도 제어기를 이용한 절삭력 제어)

  • 양호석;심영복;이건복
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.219-224
    • /
    • 2002
  • There are two important variables in machining process control, which are feed and cutting speed. In this work, a two degree-of-freedom controller is designed and implemented to achieve on-line cutting force control based on the modelling of cutting process dynamics which are established through step response test. Two schemes are proposed and implemented. The first is feed control under the constant spindle speed and spindle speed control under the constant fled speed. The second is a simultaneous control of feed and spindle speed. Those are confirmed to work properly. Especially the latter shows a faster response and we'll be evaluated to pare away workpiece by simultaneous control of position and cutting farce sooner or later.

  • PDF

Synchronous Control of a Two-Axes Driving System by Disturbance Observer and PID Controller (외란 관측기와 PID제어기를 이용한 2축 주행시스템의 동기제어)

  • 변정환;김영복;양주호
    • Journal of Ocean Engineering and Technology
    • /
    • v.15 no.1
    • /
    • pp.67-72
    • /
    • 2001
  • In this study, a methodology of synchronous control which can be applied to position synchronization of a two-axes driving system has been developed. The synchronous error is caused by model uncertainties and torque disturbance of each axis. To overcome these problems, the proposed synchronous control system has been composed of two speed controllers, disturbance observers, and one synchronous controller. The speed controllers, based on the PID control law are aimed at the following to speed reference. And the parameters of speed controllers have been designed in order for the speed response fo the second axis to correspond with the one of the first axis. The disturbance observer has been designed to restrain the torque disturbance. The synchronous controller eliminates the synchronous error by controlling the speed of the second axis. The effectiveness of the proposed method has been verified through simulation.

  • PDF

Tension Control Using Adaptive PID Controller in the Two-Drum Winder Web Transport System (Two-Drum Winder 권취 공정 시스템에서의 적용 PID 제어기를 이용한 장력제어)

  • Park, Seung-Gyu;Lee, Dong-Bin;Yim, Hwa-Yeong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.6 no.9
    • /
    • pp.813-821
    • /
    • 2000
  • In this paper, we developed modeling of tension and speed dynamics for a two-drum winder in a three span continuous web transport system which had not been previously. Dynamic modeling of the time-varying nonlinear system was derived by considering the effect of the radii and mass moment of inertia in the unwinder and the two-drum winder through winding up the web. After linearizing it, we designed with a variable-gain a PID controller for tension control and a PI controller for speed. Simulation is carried out with the variation of radii and moment of inertia at high speed for the proposed tension control system with the two-drum winder and the variavle-gain a PID controller. Results show good performance of tension control during the speed change speed at a start-up and stop.

  • PDF

Diagnosis of Excessive Vibration Signals of Two-Pole Generator Rotors in Balancing

  • Park, Jong-Po
    • Journal of Mechanical Science and Technology
    • /
    • v.14 no.6
    • /
    • pp.590-596
    • /
    • 2000
  • Cause of excessive vibration with twice the rotational speed of a two-pole generator rotor for the fossil power plants was investigated. The two-pole generator rotor, treated as a typically asymmetric rotor in vibration analysis, produces asynchronous vibration with twice the rotational speed, sub-harmonic critical speeds, and potentially unstable operating zones due to its own inertia and/or stiffness asymmetry. This paper introduces a practical balancing procedure, and presents the results of the investigation on sources of the excessive vibration based on the experimental vibration data of the asymmetric two-pole rotor in balancing.

  • PDF