• Title/Summary/Keyword: Two Phase Cross Flow

Search Result 94, Processing Time 0.026 seconds

Characteristics of SMD and Volume Flux of Two-phase Jet Injected into Cross-flow with Various Gas-liquid Ratio and Reynolds Number (횡단 유동장의 기액비 및 레이놀즈수 변화에 따른 외부혼합형 이상유체 제트의 액적크기 및 체적유속 특성)

  • Kim, Jong-Hyun;Lee, Bong-Soo;Koo, Ja-Ye
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.17 no.2
    • /
    • pp.75-81
    • /
    • 2009
  • A study was performed to investigate the characteristics of two-phase jet injected into subsonic cross-flow using the external mixed gas blast two-phase nozzle. The shadowgraph method was adopted for the cross-flow jet visualization and PDPA system was used to measure droplet size, velocity, and volume flux. The atomization of two-phase jet is initially determined according to gas to liquid mass flow-rate ratio and the Reynolds number of cross-flows. The highest penetration trajectories of two-phase jet injected into cross-flow are governed by the momentum ratio at subsonic cross-flow. As GLR of two-phase jet injected into cross-flow increases, the droplet size decreases and the distribution area of volume flux increases. The distribution of volume flux that influenced by the counter vortex pair at the downstream of cross-flow is symmetric in shape of horseshoe.

Characteristics of Droplet Properties in the Two-Phase Spray into a Subsonic Cross Flow

  • Lee, I.C.;Cho, W.J.;Koo, J.Y.
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.03a
    • /
    • pp.358-363
    • /
    • 2008
  • The spray cross-section characteristics of two-phase spray that using external-mixing nozzle injected into a subsonic cross flow were experimentally studied with various ALR ratio that is $0{\sim}59.4%$. Suction type wind tunnel was used and experiments were conducted to ambient environment. Several plain orifice nozzles with L/d of 30 and orifice diameter of 0.5 mm and orifice length 1.5 mm were tested. Free stream velocity profiles at the injection location were measured using hot wire. Spray images were captured to study collision point and column trajectory. Phase Doppler particle analyzer(PDPA) was utilized to quantitatively measuring droplet SMD, volume flux. Measuring probe of PDPA positions was moved 3-way transverse machine. SMD distributions were layered structure and peaked at the top of the spray plume and low value at bottom of the spray. Volume flux of spray was distributed to the two side region and volume flux quantity decreased when ALR ratio increased. It was found that the perpendicularly injected two-phase spray jet of external mixing into a cross flow showing that mistlike spray moved away from the test section bottom region.

  • PDF

Fluid-elastic Instability in a Tube Array Subjected to Two-Phase Cross Flow (2 상 횡 유동장에 놓인 관군의 유체탄성불안정성)

  • Sim, Woo-Gun;Park, Mi-Yeon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.33 no.2
    • /
    • pp.124-132
    • /
    • 2009
  • Experiments have been performed to investigate fluid-elastic instability of tube bundles, subjected to twophase cross flow. Fluid-elastic is the most important vibration excitation mechanism for heat exchanger tube bundles subjected to the cross flow. The test section consists of cantilevered flexible cylinder(s) and rigid cylinders of normal square array. From a practical design point of view, fluid-elastic instability may be expressed simply in terms of dimensionless flow velocity and dimensionless mass-damping parameter. For dynamic instability of cylinder rows, added mass, damping and the threshold flow velocity are evaluated. The Fluid-elastic instability coefficient is calculated and then compared to existing results given for tube bundles in normal square array.

Development of Light Transmission Fluctuation for Particle Measurement in Solid-Gas Two Phase Flows

  • YANG, Bin;WANG, Zhan-ping;HE, Yuan;CAI, Xiao-Shu
    • Particle and aerosol research
    • /
    • v.12 no.1
    • /
    • pp.21-26
    • /
    • 2016
  • In order to realize In-line and convenient measurement for solid-gas two phase flows, Light Transmission Fluctuation (LTF) based on the random variation of transmitted light intensity, light scattering theory and cross-correlation method was presented for online measurement of particle size, concentration and velocity. The statistical relationship among transmitted light intensity, particle size and particle number in measurement zone was described by Beer-Lambert Law. Accordingly, the particle size and concentration were determined from the fluctuation signal of transmitted light intensity. Simultaneously, the particle velocity was calculated by cross-correlation analysis of two neighboring light beams. By considering the influence of concentration variation in industrial applications, the improved algorithm based on spectral analysis of transmitted light intensity was proposed to improve measurement accuracy and stability. Therefore, the online measurement system based on LTF was developed and applied to measure pulverized coal in power station and raw material in cement plant. The particle size, concentration and velocity of powder were monitored in real-time. It can provide important references for optimal control, energy saving and emission reduction of energy-intensive industries.

Visualization of cross-sectional two-phase flow structure during in-tube condensation (관내 응축 시 2상유동 단면구조의 가시화)

  • Pusey, Andree;Kim, Hyungdae
    • Journal of the Korean Society of Visualization
    • /
    • v.14 no.2
    • /
    • pp.18-24
    • /
    • 2016
  • This paper presents an experimental investigation to visualize cross-sectional two-phase flow structure and identify liquid-gas interface for condensation of steam at a low mass flux in a slightly inclined tube using the axial-viewing technique, which permits to look directly into flow during condensation of steam. In this technique, two-phase flow is viewed along the axis of a pipe by locating a high-speed video camera in front of a viewer that is fitted at the outlet of the pipe. A short section of the pipe is illuminated and is recorded through the viewer, which is kept free of liquid by mildly introducing air. Experiments were conducted in a pipe of 19.05 mm in inner diameter at atmospheric pressure. Cross-sectional two-phase flow structure is obtained at a steam mass flux of $2.62kg/m^2s$ as a function of steam quality in the range from 0.5 to 0.9. The results show that stratified-wavy flow is a unique flow pattern observed in the scope of the present study. Condensate film thickness, stratification angle and void fraction were measured from the obtained flow structure images. Finally, heat transfer coefficient was calculated using the measurement data and discussed in comparison with existing correlations.

FLUID-ELASTIC INSTABILITY OF ROTATED SQUARE TUBE ARRAY IN AN AIR-WATER TWO-PHASE CROSSFLOW

  • CHUNG HEUNG JUNE;CHU IN-CHEOL
    • Nuclear Engineering and Technology
    • /
    • v.38 no.1
    • /
    • pp.69-80
    • /
    • 2006
  • Fluid-elastic instability in an air-water two-phase cross-flow has been experimentally investigated using two different arrays of straight tube bundles: normal square (NS) array and rotated square (RS) array tube bundles with the same pitch-to-diameter ratio of 1.633. Experiments have been performed over wide ranges of mass flux and void fraction. The quantitative tube vibration displacement was measured using a pair of strain gages and the detailed orbit of the tube motion was analyzed from high-speed video recordings. The present study provides the flow pattern, detailed tube vibration response, damping ratio, hydrodynamic mass, and the fluid-elastic instability for each tube bundle. Tube vibration characteristics of the RS array tube bundle in the two-phase flow condition were quite different from those of the NS array tube bundle with respect to the vortex shedding induced vibration and the shape of the oval orbit of the tube motion at the fluid-elastic instability as well as the fluid-elastic instability constant.

LES of breakup and atomization of a liquid jet into cross turbulent flow (비정상 난류 유동장에서 수직 분사 액주의 분열 및 기화에 관한 LES)

  • Yang, Seung-Joon;Sung, Hong-Gye
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.05a
    • /
    • pp.99-102
    • /
    • 2009
  • LES(Large eddy simulation) of breakup and atomization of a liquid jet into cross turbulent flow was performed. Two phase flow between a gas phase and a liquid phase was modeled by a mixed numerical scheme of both Eulerian and Lagrangian methods for gas and liquid phases respectively. The first and second breakup of liquid column was observed. The penetration depth in cross flow was comparable with experimental data for several variant of a liquid-gas momentum flux ratio by varying liquid injection velocities. SMD(Sauter Mean Diameter) distribution downstream of jet was analyzed.

  • PDF

Pressure Distribution over Tube Surfaces of Tube Bundle Subjected to Two-Phase Cross-Flow (이상 유동에 놓인 관군의 표면에 작용하는 압력 분포)

  • Sim, Woo Gun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.37 no.1
    • /
    • pp.9-18
    • /
    • 2013
  • Two-phase vapor-liquid flows exist in many shell and tube heat exchangers such as condensers, evaporators, and nuclear steam generators. To understand the fluid dynamic forces acting on a structure subjected to a two-phase flow, it is essential to obtain detailed information about the characteristics of a two-phase flow. The characteristics of a two-phase flow and the flow parameters were introduced, and then, an experiment was performed to evaluate the pressure loss in the tube bundles and the fluid-dynamic force acting on the cylinder owing to the pressure distribution. A two-phase flow was pre-mixed at the entrance of the test section, and the experiments were undertaken using a normal triangular array of cylinders subjected to a two-phase cross-flow. The pressure loss along the flow direction in the tube bundles was measured to calculate the two-phase friction multiplier, and the multiplier was compared with the analytical value. Furthermore, the circular distributions of the pressure on the cylinders were measured. Based on the distribution and the fundamental theory of two-phase flow, the effects of the void fraction and mass flux per unit area on the pressure coefficient and the drag coefficient were evaluated. The drag coefficient was calculated by integrating the measured pressure on the tube by a numerical method. It was found that for low mass fluxes, the measured two-phase friction multipliers agree well with the analytical results, and good agreement for the effect of the void fraction on the drag coefficients, as calculated by the measured pressure distributions, is shown qualitatively, as compared to the existing experimental results.

Development of an Electrical Capacitance Tomography Code for Analysis of Two-Phase Flow in the Rectangular Pipe (사각관 이상유동 분석을 위한 전기적 캐패시턴스 토모그라피 코드 개발)

  • Lee, Kyoung-Hwang;Lee, Jae-Young
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.29 no.1 s.232
    • /
    • pp.87-94
    • /
    • 2005
  • A computer code for Electrical Capacitance Tomography (ECT) is developed to sense the cross sectional phase distribution of two-phase flow in the rectangular pipe in which the tomography sensor furnished by the insulated wall, electrodes, and electric field screen. The computer code had two steps for the image reconstruction. In the forward projection step, the sensitivity matrix was constructed based on the electric field calculated by the finite difference method. In the backward projection step, the sensitivity matrix and the measured capacitances were used to reconstruct the cross sectional image. Several algorithms including LBP, TR, ITR, and PLI were employed to find the proper one for the two-phase flow analysis. Since the dielectric constant of the water in two-phase flow is sensitive to the thermal parameter such as, temperature and pressure, the developed code was evaluated to find their accuracy, speed of calculation, and sensitivity to the variation of the dielectric constant. It was found that the iterative methods are superior to the direct methods for the image reconstruction, and the PLI method was the best in the variation of the dielectric constants.

Fluid-Elastic Instability of Tube Bundles in Two-Phase Cross-Flow (2상 횡유동을 받는 튜브군의 유체탄성 불안정성)

  • 김범식;장효환
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.15 no.6
    • /
    • pp.1948-1966
    • /
    • 1991
  • Two-phase cross-flow exists in many shell-tube heat exchangers such as condensers, reboilers and nuclear steam generators. To avoid problems due to excessive vibration, information on vibration excitation in two-phase cross-flow is required. Fluid-elastic instability is discussed in this paper. Four tube bundle configurations were subjected to increasing flow up to the onset of fluid-elastic instability. The tests were done on bundles with one flexible tube surrounded by rigid tubes. The fluid-elastic instability behavior is different for intermittent flows than for bubbly flows. For bubbly flows, the observed instabilities satisfy the relationship V/fd=K(2.pi..zeta. m/rho. $d^{21}$)$^{0.51}$ in which the minimum instability factor K was found to be 2.3 for bundles of p/d=1.22. The lowest critical velocities for fluid-elastic instability were experienced with parallel-triangular tube bundles. For intermittent flow, the observed instabilities did not follow the forgoing relation-ship. Significantly lower flow velocities were required for instability..