• 제목/요약/키워드: Two Holes

검색결과 603건 처리시간 0.028초

Stresses analyses of shell structure with large holes

  • Tian, Zongshu;Liu, Jinsong
    • Structural Engineering and Mechanics
    • /
    • 제6권8호
    • /
    • pp.883-899
    • /
    • 1998
  • The strength, deformation and buckling of a large engineering structure consisting of four ellipsoidal shells, two cylindrical shells with stiffening ribs and large holes, one conical shell and three pairs of large flanges under external pressure, self weight and heat sinks have been analysed by using two kinds of five different finite elements - four assumed displacement finite elements (shell element with curved surfaces, axisymmetric conical shell element with variable thickness, three dimensional eccentric beam element, axisymmetric solid revolutionary element) and an assumed stress hybrid element (a 3-dimensional special element developed by authors). The compatibility between different elements is enforced. The strength analyses of the top cover and the main vessel are described in the paper.

T-stress solutions for cracks in rectangular plates with multiple holes

  • Yu, Jackie;Wang, Xin;Tan, Choon-Lai
    • Structural Engineering and Mechanics
    • /
    • 제26권5호
    • /
    • pp.557-568
    • /
    • 2007
  • The elastic T-stress is increasingly being recognized as an important second parameter to the stress intensity factor for fracture and fatigue assessments. In this paper, the mutual or M-contour integral approach is employed in conjunction with the Boundary Element Method (BEM) to determine the numerical T-stress solutions for cracks in plates with multiple holes. The problems investigated include plates of infinite width with multiple holes at which single or double, symmetric cracks have grown from. Comparisons of these results are also made with the corresponding solutions of finite plates with a single hole. For completeness, stress intensity factor solutions for the cracked geometries analyzed are presented as well. These results will be useful for failure assessments using the two-parameter linear elastic fracture mechanics approach.

회전체 원판의 볼트구멍에 존재하는 모서리균열의 유한요소해석 (Finite Element Analysis of a Rotating Disc with a Corner Crack Originating at the Bolt Holes)

  • 한상배;이진호;김영진
    • 대한기계학회논문집
    • /
    • 제17권12호
    • /
    • pp.3055-3062
    • /
    • 1993
  • The objective of this paper is to obtain stress intensity factor solutions for a corner crack originating at bolt holes in a rotating disc. Initially two-dimensional finite element analyses of a rotating disc with bolt holes are performed to determine the maximum stress region. Subsequently three-dimensional finite element analyses of a rotating disc with a corner crack originating at the bolt holes are performed with a variety of crack geometries. According to the numerical results, the maximum stress intensity factor, with an increase in crack depth ratio, was observed at the surface of the plate due to the interference effect of corner crack and disc bore.

Horizon Run 5 Black Hole Populations and Pulsar Timing Array

  • Kim, Chunglee;Park, Hyo Sun;Kim, Juhan;Lommen, Andrea
    • 천문학회보
    • /
    • 제46권2호
    • /
    • pp.45.2-45.2
    • /
    • 2021
  • Merging of two supermassive black holes would generate gravitational waves that can be detected by the Pulsar Timing Array (PTA) in the nHz band. In order to assess the plausibility of GW detection with PTA and to develop the data analysis scheme, it is important to understand the underlying properties of black holes and black hole binaries. In this work, we present mass and redshift distributions of black hole mergers using the Horizon Run 5 (HR5) data and discuss their implications for GW detection. We find a general conjecture about the black hole merger tree is true with the Horizon Run 5. For example, a) relatively lighter black holes merge at higher redshifts and b) binary mergers do contribute to the formation of more massive black holes toward low redshifts. We also present our plan to use the black hole properties extracted from the HR5 data in order to generate simulated GW signals to be injected into actual PTA data analysis pipelines. Mass and distance obtained from the HR5 would be key ingredients to generate a more realistic PTA source data set.

  • PDF

홀의 유무에 따른 평판 좌굴하중 산정을 위한 좌굴계수 (Use of Buckling Coefficient in Predicting Buckling Load of Plates with and without Holes)

  • 베자드 모하마자데;노혁천
    • 복합신소재구조학회 논문집
    • /
    • 제5권3호
    • /
    • pp.1-7
    • /
    • 2014
  • Buckling, a form of failure happened to plated structures, is investigated in this study. The main focus is to investigate the effects of thickness of the plates having through-thickness holes on buckling when the plate is subjected to in-plane compression. Plates having length of 200mm and width of 100mm are chosen to have thickness in range from 0.50mm to 10mm. Two holes of diameters of 20mm are implemented in plates. The finite element procedure using ABAQUS is applied for analyses. Then using the Gerard and Becker equation compressive buckling coefficients, Kc, are calculated and presented to enable engineers to calculate buckling load for the desired plate with holes in specific dimension. In order to generalize the obtained results, verification analysis has been performed by taking plates having different dimensions from the original ones used in this study. The verification showed the capability of buckling coefficients to predict buckling stresses of plates in various dimensions.

전산유체역학(CFD)를 활용한 정수공정에서 길이가 긴 유공관 설계 (Design of the long perforated pipe in water treatment process using CFD)

  • 조영만;유수전;노재순;빈재훈
    • 상하수도학회지
    • /
    • 제24권3호
    • /
    • pp.295-305
    • /
    • 2010
  • Role of the perforated pipe is to drain the water with equal pressure and velocity through the holes of perforated pipe. The perforated pipe is being used in many processes of water treatment system, however, the design parameter of perforated pipe is not standardized in korea. In this study, we have found the design parameter of perforated pipe in the water treatment system using the Computational Fluid Dynamics (CFD). The uniformity of outflow from the perforated pipe is directly affected according to area ratio(gross area of holes/surface area of the perforated pipe). In other words, the uniformity of outflow is improved as area ratio is smaller. Also, at the same area ratio, the uniformity of outflow is improved as number of holes is increase. Specially, in case of the two holes per length of pipe diameter(2/D) shows the most uniformity of outflow and the best hydraulic with the smaller pressure drop. The uniformity of outflow is aggravated and the pressure drop of pipe is decrease as length of pipe is longer. In case of that pipe length is 10m and above, the pressure drop decreased about 30% when diameter ratio is 40% with 0.2% of area ratio by comparison with 0.1% of area ratio.

The effect of ion to electron mass ratio on Ion beam driven instability and ion holes by PIC simulation

  • 홍진희;이은상;민경욱
    • 천문학회보
    • /
    • 제37권1호
    • /
    • pp.92.2-92.2
    • /
    • 2012
  • Previous simulations posed a problem that they used reduced ion to electron mass ratios to save computation time. It was assumed that ion and electron dynamics are sufficiently separated, but it was not clearly verified. In this study, we examine the effect of ion to electron mass ratios on the generation of ion holes by ion beam driven instability. Ion holes are generated via electron holes in an applied electric field with the given initial condition. First, the ion acoustic instability is excited and nonlinearly develops. After the ion acoustic instability nonlinearly develops, the ion two-stream instability is excited and develops into ion holes. This implies that the previously suggested ion beam driven instability is strongly affected by the coupling between ions and electrons and the ion to electron mass ratio is important on the development of the instability. The energy transition and detail variation is different as reduced mass ratio under the same observation value based on FAST satellite. Although, the parameters are rescaled by conserving the kinetic energy to obtain the proper results, the nonlinear evolution is not perfectly identical.

  • PDF

An overview of different retrofitting methods for arresting cracks in steel structures

  • Karamloo, Mohammad;Mazloom, Moosa;Ghasemi, Ali
    • Structural Monitoring and Maintenance
    • /
    • 제6권4호
    • /
    • pp.291-315
    • /
    • 2019
  • Fatigue cracks are inevitable in circumstances in which the cyclic loading exists. Therefore, many of mechanical components are in a risk of being in exposure to fatigue cracks. On the other hand, renewing the facilities or infrastructures is not always possible. Therefore, retrofitting the structures by means of the available methods, such as crack arrest methods is logical and in some cases inevitable. In this regard, this paper considers three popular crack arrest methods (e.g., drilling stop-hole, steel welded patch, and carbon fiber reinforced (CFRP) patch), which have been compared by using extended finite element method (XFEM). In addition, effects in terms of the width and thickness of patches and the configuration of drilling stop holes have been evaluated. Test results indicated that among the considered methods, CFRP patches were the most effective means for arresting cracks. Besides, in the case of arresting by means of drilling stop holes, drilling two holes next to the crack-tip was more effective than blunting the crack-tip by drilling one hole. In other words, the results indicated that the use of symmetric welded metal patches could lead to a 21% increase in fatigue life, as compared to symmetric stop holes. Symmetric CFRP patches enhanced the fatigue life of cracked specimen up to 77%, as compared to drilling symmetric stop holes. In addition, in all cases, symmetric configurations were far better than asymmetric ones.

하나로 조사시험용 다공 원통헝 구조물의 온도해석 (Temperature Analysis of the Cylindrical Structure with Multi-Holes of HANARO Irradiation Test)

  • 최영진;강영환;이영신
    • 한국전산구조공학회논문집
    • /
    • 제17권4호
    • /
    • pp.405-412
    • /
    • 2004
  • 재료나 핵연료조사시험에서 다공원통형구조물의 모든 구성품에서 감마열 및 fission과 같은 열원이 발생한다. 본 연구는 조사시험중 다공원통형구조물의 열적건전성을 평가하기 위해 온도분포에 대한 일반해를 구하는데 그 목적이 있다. 다공원통형 구조물의 온도해석을 위해 2차원 열전토 방정식을 이용하였다. 유한요소해석은 ANSYS 6.1을 이용하여 수행하였다. 다공원통형 구조물의 온도해석에서 이론해석결과와 유한요소해석결과는 홀의 개수가 3개 이하에서는 온도가 서로 잘 일치하는 것으로 나타났다. 구조물의 홀 개수가 4개일때, 온도분포해석에 대한 두 결과의 차이가 증가하였다.

Thickness of the Macula, Retinal Nerve Fiber Layer, and Ganglion Cell-inner Plexiform Layer in the Macular Hole: The Repeatability Study of Spectral-domain Optical Coherence Tomography

  • Lee, Woo Hyuk;Jo, Young Joon;Kim, Jung Yeul
    • Korean Journal of Ophthalmology
    • /
    • 제32권6호
    • /
    • pp.506-516
    • /
    • 2018
  • Purpose: We measured the thicknesses of the ganglion cell and inner plexiform layer (GCIPL), the macula, and the retinal nerve fiber layer (RNFL) using spectral-domain optical coherence tomography in patients with idiopathic macula holes to analyze the repeatability of these measurements and compare them with those of the fellow eye. Methods: We evaluated 85 patients who visited our retinal clinic. The patients were divided into two groups according to their macular hole size: group A had a size of $<400{\mu}m$, while group B had a size of ${\geq}400{\mu}m$. Repeatability was determined by comparing the thicknesses of the GCIPL, macula, and RNFL with those of the normal fellow eye. Results: The average central macular thickness in patients with macular holes was significantly thicker than that in the normal fellow eye ($343.8{\pm}78.6$ vs. $252.6{\pm}62.3{\mu}m$, p < 0.001). The average thickness of the GCIPL in patients with macular holes was significantly thinner than that in the normal fellow eye ($56.1{\pm}23.4$ vs. $77.1{\pm}12.8{\mu}m$, p < 0.001). There was no significant difference in the average RNFL thickness between eyes with macular holes and fellow eyes ($92.4{\pm}10.0$ vs. $95.5{\pm}10.7{\mu}m$, p = 0.070). There were also no significant differences in the thicknesses of the GCIPL and RNFL among the two groups (p = 0.786 and p = 0.516). The intraclass correlation coefficients for the macula and RNFL were 0.994 and 0.974, respectively, in patients with macular holes, while that for the GCIPL was 0.700. Conclusions: Macular contour change with macular hole results in low repeatability and a tendency of thinner measurement regarding GCIPL thickness determined via spectral-domain optical coherence tomography. The impact of changes in the macular shape caused by macular holes should be taken into consideration when measuring the GCIPL thickness in patients with various eye diseases such as glaucoma and in those with neuro-ophthalmic disorders.