• Title/Summary/Keyword: Two Dimensional Magnetic Property

Search Result 25, Processing Time 0.025 seconds

A Measurement System for Two-Dimensional DC-Biased Magnetic Property

  • Enokizono, Masato;Takahashi, Syuichi;Ikariga, Atsushi
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • v.2B no.4
    • /
    • pp.143-148
    • /
    • 2002
  • Up to now, DC-biased magnetic properties have been measured in one dimension (scalar). However, scalar magnetic properties are insufficient to clarify DC-biased magnetic properties because scalar magnetic properties can only impossibly consider the phase difference between the magnetic flux density B vector and the magnetic field strength H vector. Thus the magnetic field strength H and magnetic flux density B in magnetic materials must be directly measured as a vector quantity (two-dimensional). This paper presents measurement system to clarify the two-dimensional DC-biased magnetic properties.

Measurement of 2 Dimensional Magnetic Property of Grain-oriented Electrical Steel Sheet According to Exciting Field Direction using SST with 2 Axes Excitation (이방향 여자형 SST를 이용한 이방성 전기강판의 인가자계 방향에 따른 2차원 자계특성 측정)

  • Hwan, Eum-Young;Kim, Hong-Jung;Hong, Sun-Ki;Shin, Pan-Seok;Koh, Chang-Seop
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.55 no.5
    • /
    • pp.250-257
    • /
    • 2006
  • It is well known that Grain-oriented electrical steel sheets have two dimensional magnetic properties according to the direction of exciting field such as non-linear phase difference between magnetic flux density and magnetic field intensity vectors, different iron loss and permeability even when an alternating magnetic field is applied. The measurement and application of the two dimensional magnetic properties of the Grain-oriented electrical steel sheets, therefore, are very important for the design and precise performance analysis of electric machines made of them. As the direction of exciting field changes, in this paper, the two dimensional magnetic properties of a Grain-oriented electrical steel sheet, i.e., non-linear B-H curves, phase difference between B and H, and iron loss characteristics, are measured using SST(Single Sheet Tester) which has two axes excitation. The measured results are presented in two ways: using $(B,\theta_B)$ method and using hysteresis loops along rolling and transverse directions, respectively.

Calculation of Iron Loss under Rotational Magnetic Field Using Finite Element Method (회전 자계에 의한 철손의 유한요소 해석)

  • Lee, H.Y.;Park, G.S.;Hahn, S.Y.
    • Proceedings of the KIEE Conference
    • /
    • 1994.07a
    • /
    • pp.147-149
    • /
    • 1994
  • In designing high efficiency electrical machines, calculation of iron loss is very important. And it is reported that in the induction motor and in the T-joint of 3 phase transformer, there occurred rotational magnetic field and much iron loss is generated owing to this field. In this paper, rotational power loss in the electrical machine under rotational magnetic field is discussed. Until now, loss analysis is based on the magnetic properties under alternating field. And with this one dimensional magnetic propertis, it is difficult to express iron loss under rotational field. In this paper, we used two dimensional magnetic property data for the numerical calculation of rotational power loss. We used finite element method for calculation and the analysis model is two dimensional magnetic property measurement system. We used permeability tensor instead of scalar permeability to present two dimensional magnetic properties. And in this case, we cannot uniquely define energy functional because of the asymmetry of the permeability tensor, so Galerkin method is used for finite element analysis.

  • PDF

Measurement of Two Dimensional Magnetic Properties of Electrical Steel Sheets under Rotating Magnetic Fields (전기강판의 회전자계 하에서의 2차원 자계특성 측정)

  • Eum, Young-Hwan;Hong, Sun-Ki;Shin, Pan-Seok;Koh, Chang-Seop
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.55 no.12
    • /
    • pp.617-622
    • /
    • 2006
  • It is necessary to measure precisely the magnetic characteristics of electrical steel sheets under rotating magnetic fields, to obtain an accurate numerical performance analysis of electric machines made of electrical steel sheets. In this paper, the two dimensional magnetic characteristics of an electrical steel sheet are measured and explained under rotating magnetic fields using a two-axes-excitation type single sheet tester (SST). Through experiments, the magnetic properties, under rotating magnetic fields, of a non-oriented and grain oriented electrical steel sheet were measured respectively. In addition, the iron losses due to not only the alternating magnetic fields, but also rotating magnetic fields were measured. These experimentally measured results can evidently be applied to the analysis of iron losses in electrical machines.

A Computationally Efficient Finite Element Analysis Algorithm Considering 2-D Magnetic Properties of Electrical Steel Sheet

  • Yao, Yingying;Li, Wei;Yoon, Hee-Sung;Fujiwara, Koji;Koh, Chang-Seop
    • Journal of Electrical Engineering and Technology
    • /
    • v.3 no.3
    • /
    • pp.385-390
    • /
    • 2008
  • For taking account of the two-dimensional magnetic properties of a grain-oriented electrical steel sheet, the effective anisotropic tensor reluctivity is examined, and a computationally efficient algorithm is suggested by using the response surface method to model the two-dimensional magnetic properties. It is shown that the reconstructed two-dimensional magnetic properties are fairly effective to stabilize the convergence characteristics of the Newton-Raphson iteration in the nonlinear magnetic field analysis.

Examination of Two-Dimensional Magnetic Properties in a 5-Leg-Different- Volume- V-Connection- Transformer Core

  • Urata Shinya;Shimoji Hiroyasu;Todaka Takashi;Enokizono Masato
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • v.5B no.3
    • /
    • pp.243-247
    • /
    • 2005
  • The Different-volume- V-connection transformer is known as an electric power source that can supply 3-phase electric power and single-phase electric power at the same time. Usually, we use two single-phase transformers that have different volumes. In this paper, we propose the use of a 3-phase 5-leg transformer with the different-volume- V-connection. And, we examine the magnetic properties of the 5-leg core model with the different-volume- V-connection. The magnetic properties of cores with the different-volume- V-connection are compared with those with the delta-connection. In order to express the magnetic anisotropy of the core materials and to calculate the iron loss directly, the two-dimensional vector magnetic property is considered with the E&SS modeling in the simulation.

Examination of Frequency Dependence of Iron Loss in Magnetic Field Analysis

  • Masato Enokizono;Yuji Fujita
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • v.11B no.3
    • /
    • pp.59-63
    • /
    • 2001
  • This paper presents a new modeling of the two dimensional magnetic property in soft magnetic materials for the magnetic field computations. In this modeling an approximate treatment is introduced to expand the applicable exciting frequency range. The result shows that the new modeling presented here is very useful in simplicity of magnetic field analysis.

The effect of field-line twist on the dynamic and electric current structures of emerging magnetic field on the Sun

  • An, Jun-Mo;Lee, Hwan-Hee;Kang, Ji-Hye;Magara, Tetsuya
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.36 no.2
    • /
    • pp.102.1-102.1
    • /
    • 2011
  • In this study we use three-dimensional magnetohydrodynamic simulations to investigate how the dynamic state of emerging magnetic field is related to the twist of field lines. Emerging magnetic field forms a magnetic structure on the Sun where various kinds of activity such as solar flares, jets, and coronal mass ejections are observed. To understand the physical mechanism for producing such activity, we have to know the dynamic nature of this structure. Since flares are the manifestation of rapidly dissipating electric current in the corona, we also investigate the distribution of current density inside the structure and examine how it depends on the field-line twist. To demonstrate the dynamic structure of emerging magnetic field, we focus on the factors characterizing the geometric property and stratification of emerging magnetic field, such as the curvature of field line and the scale height of field strength. These two factors show that emerging field forms a two-part structure in which the central part is close to a force-free state while the outer marginal part is in a fairly dynamic state where magnetic pressure force is dominant. We discuss how the field-line twist affects the two-part structure and also explain a possible relation between electric current structure and sigmoid observed in a preflare phase.

  • PDF

Structures and Magnetic Properties of Monomeric Copper(II) Bromide Complexes with a Pyridine-Containing Tridentate Schiff Base

  • Kang, Sung Kwon;Yong, Soon Jung;Song, Young-Kwang;Kim, Young-Inn
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.12
    • /
    • pp.3615-3620
    • /
    • 2013
  • Two novel copper(II) bromide complexes with pyridine containing Schiff base ligands, $Cu(pmed)Br_2$ and $Cu(pmed)Br_2$ where pmed = N'-((pyridin-2-yl)methylene)ethane-1,2-diamine (pmed) and dpmed = N,N-diethyl-N'-((pyridin-2-yl)methylene)ethane-1,2-diamine (dpmed) were synthesized and characterized using X-ray single crystal structure analysis, optical and magnetic susceptibility measurements. Crystal structural analysis of $Cu(pmed)Br_2$ showed that the copper(II) ion has a distorted square-pyramidal geometry with the trigonality index of ${\tau}=0.35$ and two intermolecular hydrogen bonds, which result in the formation of two dimensional networks in the ab plane. On the other hand, $Cu(pmed)Br_2$ displayed a near square-pyramidal geometry with the value of ${\tau}=0.06$. In both compounds, the NNN Schiff base and one Br atom occupy the basal plane, whereas the fifth apical position is occupied by the other Br atom at a greater Cu-Br apical distance. The reported complexes show $g_{\mid}$ > $g_{\perp}$ > 2.0023 with a $d_{x2-y2}$ ground state and a penta-coordinated square pyramidal geometry. Variable temperature magnetic susceptibility measurements showed that the developed copper(II) complexes follow the Curie-Weiss law, that is there are no magnetic interactions between the copper(II) ions since the Cu--Cu distance is too far for magnetic contact.

Cyanide-bridged Trinuclear and Ethylenediamine-bridged One-dimensional Cobalt(III)-Manganese(II) Complexes: Synthesis, Crystal Structures and Magnetic Properties

  • Zhang, Daopeng;Zhang, Lifang;Zhao, Zengdian;Ni, Zhonghai
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.8
    • /
    • pp.2544-2548
    • /
    • 2011
  • Two pyridinecarboxamide cobalt dicyanide building blocks and Mn(III) compounds have been employed to assemble cyanide-bridged heterometallic complexes, resulting in three trinuclear cyanide-bridged $Co^{III}-Mn^{II}$ complexes: $\{[Mn(MeOH)_4][Co(bpb)(CN)_2]_2\}{\cdot}2MeOH{\cdot}2H_2O$ (1), $\{[Mn(MeOH)_4][Co(bpmb)(CN)_2]_2\}{\cdot}2MeOH{\cdot}2H_2O$ (2) and $\{[Mn(DMF)_2(en)_2][Co(bpb)(CN)_2]_2\}{\cdot}2DMF{\cdot}H_2O$ (3) ($bpb^{2-}$ = 1,2-bis(pyridine-2-carboxamido)benzenate, $bpmb^{2-}$ = 1,2-bis(pyridine-2-carboxamido)-4-methyl-benzenate, en = ethylenediamine). Single crystal X-ray diffraction analysis shows their similar sandwich-like structures, in which the two cyanide-containing building blocks act as monodentate ligands through one of their two cyanide groups to coordinate the Mn(II) center. For complex 3, it was further linked into one-dimensional structure by ethylenediamine acting as bridges. Investigation of the magnetic properties of complex 3 reveals weak antiferromagnetic coupling between the neighboring Mn(II) centers through the bridging ethylenediamine molecule. A best-fit to the magnetic susceptibilities of complex 3 gave the magnetic coupling constant J = -0.073(2) $cm^{-1}$.