• Title/Summary/Keyword: Two Circular Cylinder

Search Result 255, Processing Time 0.026 seconds

Hydrodynamic Interference between Two Circular Cylinders in Tandem and Side by Side Arrangements (직렬 및 병렬배열에서 2원주의 유체역학적 간섭)

  • 노기덕;박지태;강호근
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.27 no.1
    • /
    • pp.49-56
    • /
    • 2003
  • The hydrodynamic interference between two circular cylinders in tandem and side by side arrangements was investigated by measuring of lift and drag on each cylinder. The time variations of interference lift and drag coefficients in each arrangement were observed at center-to-center pitch ratios of P/D=1.25 and 2.5 and Reynolds number of $Re=1.5\times10^4$. Average interference lift and drag coefficients were also observed at pitch ratios from P/D=1.25 to 2.5 and Reynolds number from $Re=1.5\times10^4$ to $1.5\times10^4$. The hydrodynamic interference between two circular cylinders differed with the shape of the arrangement and the pitch ratio, but the characteristics were revealed by measuring of lift and drag on each cylinder.

Aerodynamics of a cylinder in the wake of a V-shaped object

  • Kim, Sangil;Alam, Md. Mahbub;Russel, Mohammad
    • Wind and Structures
    • /
    • v.23 no.2
    • /
    • pp.143-155
    • /
    • 2016
  • The interaction between two different shaped structures is very important to be understood. Fluid-structure interactions and aerodynamics of a circular cylinder in the wake of a V-shaped cylinder are examined experimentally, including forces, shedding frequencies, lock-in process, etc., with the V-shaped cylinder width d varying from d/D = 0.6 to 2, where D is the circular cylinder diameter. While the streamwise separation between the circular cylinder and V-shaped cylinder was 10D fixed, the transverse distance T between them was varied from T/D = 0 to 1.5. While fluid force and shedding frequency of the circular cylinder were measured using a load cell installed in the circular cylinder, measurement of shedding frequency of the V-shaped cylinder was done by a hotwire. The major findings are: (i) a larger d begets a larger velocity deficit in the wake; (ii) with increase in d/D, the lock-in between the shedding from the two cylinders is centered at d/D = 1.1, occurring at $d/D{\approx}0.95-1.35$ depending on T/D; (iii) at a given T/D, when d/D is increased, the fluctuating lift grows and reaches a maximum before decaying; the d/D corresponding to the maximum fluctuating lift is dependent on T/D, and the relationship between them is linear, expressed as $d/D=1.2+{\frac{1}{e}}T/D$; that is, a larger d/D corresponds to a greater T/D for the maximum fluctuating lift.

A Numerical Study of The Motion of a Circular Cylinder Suspended in a Square Enclosure (사각 밀폐계 내 자연대류에 의한 원형 실린더의 운동 특성에 관한 수치적 연구)

  • Son, Seong-Wan;Jeong, Hea-Kown;Ha, Man-Yeong;Yoon, Hyun-Sik
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.22 no.11
    • /
    • pp.727-734
    • /
    • 2010
  • The present study numerically investigates the motion of a solid body suspended in the square enclosure with natural convection. A two-dimensional circular cylinder levitated thermally has been simulated by using thermal lattice Boltzmann method(TLBM) with the direct-forcing immersed boundary method. To deal with the ascending, falling or levitation of a circular cylinder in natural convection, the immersed boundary method is expanded and coupled with the TLBM. The circular cylinder is located at the bottom of a square enclosure with no restriction on the motion and freely migrates due to the Boussinesq approximation which is employed for the coupling between the flow and temperature fields. For different density ratio between the cylinder and the fluid, the motion characteristics of the circular cylinder for various Grashof numbers have been carried out. The Prandtl number is fixed as 0.7.

Three-dimensional flow characteristics and heat transfer to a circular cylinder with a hot circular impinging air jet (원형 실린더에 충돌하는 고온 제트의 3차원 유동 특성 및 열전달)

  • Hong, Gi-Hyeok;Gang, Sin-Hyeong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.21 no.2
    • /
    • pp.285-293
    • /
    • 1997
  • Numerical calculations has been performed for the flow and heat transfer to a circular cylinder from a hot circular impinging air jet. The characteristics of the flow and heat transfer are investigated and compared with the two-dimensional flow. The present study lays emphasis on the investigation on the flow and heat transfer of the three-dimensionality. The effects of the buoyancy force and the size of jet are also studied. The noticeable difference between the three and the two-dimensional cases is that there is axial flow of low temperature into the center-plane of the cylinder from the outside in the recirculation region. Local Nusselt number over the cylinder surface has higher value for the large jet as compared with that of the small jet since the energy loss of hot jet to the ambient air decreases with increase of the jet size. As buoyancy force increases the flow accelerates so that the period of cooling by the ambient air is reduced, which results in higher local Nusselt number over the surface.

Numerical Simulation on Laminar Flow past a Rotating Circular Cylinder (회전하는 원형 주상체 주위의 층류 유동장의 수치 시뮬레이션)

  • MooN JIN-KooK;PARK JONG-CHUN;YOON HYUN-SIK;CHUN HO-HWAN
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.222-228
    • /
    • 2004
  • The effects of rotation on the unsteady laminar flow past a circular cylinder is numerically investigated in the present study. We obtained the numerical solutions for unsteady two-dimensional governing equation for the flow using two different numerical schemes. One is an accurate spectral method and another is finite volume method. Above all, the flow around a stationary circular cylinder is investigated to understand the basic phenomenon of flow separation, bluff body wake. Also, the validation of our own codes, expecially based on FVM, is carried out by the comparison of results obtained from our simulations using two different schemes and previous numerical and experimental studies. By the effect of rotation, the mean lift increases and drag deceases, which well represent the previous study.

  • PDF

Vortex-Induced Vibrations of a Circular Cylinder at Low Reynolds Numbers

  • Lee, Minhyung;Lee, Sung-Yeoul
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.11
    • /
    • pp.1628-1637
    • /
    • 2003
  • The vortex-induced vibrations of a circular cylinder at low Reynolds (Re) numbers are simulated by applying a method of the two-dimensional computational fluid dynamics coupled with the structural dynamics based on the multi-physics. The fluid solver is first tested on the case of a fixed cylinder at Re$\leq$160, and shows a good agreement with the previous high-resolution numerical results. The present study then reports on the detailed findings concerning the vibrations of an elastic cylinder with two degrees of translational freedom for a number of cases in which Re is fixed at 200, a reduced damping parameter Sg=0.01, 0.1, 1.0, 10.0 and the mass ratio M$\^$*/ = 1, 10.

Numerical Investigation of Cross- Flow of a Circular Cylinder Under an Electromagnetic Force (전자기력을 이용한 유동제어에 관한 수치해석적 연구)

  • Kim, Seong-Jae;Lee, Choung-Mook
    • Proceedings of the KSME Conference
    • /
    • 2001.06e
    • /
    • pp.148-153
    • /
    • 2001
  • A computational investigation of the effect of the electromagnetic force(or Lorentz force) on the flow behavior around a circular cylinder, a typical model of bluff bodies, is conducted. Two-dimensional unsteady flow computation for $Re=10^2$ is carried out using a numerical method of finite difference approximation in a curvilinear body-fitted coordinate system by solving the momentum equations including the Lorentz force as a body force. The effect of the spatial variations of the Lorentz forcing region and forcing direction along the cylinder circumference is investigated. The numerical results show that the Lorentz force can effectively suppress the flow separation and oscillation of the lift force of the circular cylinder cross-flow, leading to the reduction of the drag.

  • PDF

Construction of Database on Turbulent Properties of a Circular Cylinder with a 3D-PTV Technique (3차원 PTV에 의한 원주후류 난류통계량 데이터베이스 구축)

  • Doh D. H.;Cho Y B.;;Pyeon Y. B.;Baek T. S.
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.249-252
    • /
    • 2002
  • Turbulent properties of the wake of a circular cylinder were measured The diameter of the cylinder is l0mm and the Reynolds number is 420. A new 3D-PTY system was constructed and a genetic algorithm (GA) was introduced in order to increase the number of instantaneous three-dimensional velocity vectors. In the GA two fitness functions were introduced in order to enhance the correspondences of the particles. The measurement system consists of three CCD cameras, Ar-ion laser, an image grabber and a host computer. More than 3000 instantaneous three-dimensional velocity vectors were obtained by the system. The database of the turbulent properties of the circular cylinder was constructed by the constructed 3D-PTV system.

  • PDF

Numerical Investigation of Cross-Flow Around a Circular Cylinder at a Low-Reynolds Number Flow Under an Electromagnetic Force

  • Kim, Seong-Jae;Lee, Choung-Mook
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.3
    • /
    • pp.363-375
    • /
    • 2002
  • The effect of the electromagnetic force (or Lorentz force) on the flow behavior around a circular cylinder is investigated by computation. Two-dimensional unsteady flow computation for Re=10$^2$is carried out using a numerical method of finite difference approximation in a curvilinear body-fitted coordinate system by solving the momentum equations including the Lorentz force as a body force. The effect of spatial variations of the Lorentz forcing region and forcing direction along the cylinder circumference is investigated. The numerical results show that the Lorentz force can effectively suppress the flow separation and oscillation of the lift force of circular cylinder cross-flow, leading to reduction of drag.

COMPUTATION OF ADDED MASS AND DAMPING COEFFICIENTS DUE TO A HEAVING CYLINDER

  • Bhatta Dambaru D.
    • Journal of applied mathematics & informatics
    • /
    • v.23 no.1_2
    • /
    • pp.127-140
    • /
    • 2007
  • We present the boundary value problem (BVP) for the heave motion due to a vertical circular cylinder in water of finite depth. The BVP is presented in terms of velocity potential function. The velocity potential is obtained by considering two regions, namely, interior region and exterior region. The solutions for these two regions are obtained by the method of separation of variables. The analytical expressions for the hydrodynamic coefficients are derived. Computational results are presented for various depth to radius and draft to radius ratios.