• Title/Summary/Keyword: Two Circular Cylinder

Search Result 255, Processing Time 0.024 seconds

COMPUTATION OF AERODYNAMIC SOUNDS AT LOW MACH NUMBERS USING FINITE DIFFERENCE LATTICE BOLTZMANN METHOD

  • Kang H. K;Tsutahara M;Shikata K;Kim E. R;Kim Y. T;Lee Y. H
    • Journal of computational fluids engineering
    • /
    • v.10 no.1
    • /
    • pp.8-15
    • /
    • 2005
  • Aerodynamic sounds generated by a uniform flow around a two-dimensional circular cylinder at Re=150 are simulated by applying the finite difference lattice Boltzmann method. Thethird-order-accurate up-wind scheme (UTOPIA) is used for the spatial derivatives, and the second-order-accurate Runge-Kutta scheme is applied for the time marching. We have succeed in capturing very small pressure fluctuations with the same frequency of the Karman vortex street compared with the pressure fluctuation around a circular cylinder. The propagation velocity of the acoustic waves shows that the points of peak pressure are biased upstream due to the Doppler effect in the uniform flow. For the downstream, on the other hand, it is faster. It is also apparent that the amplitude of sound pressure is proportional to r /sup -1/2/,r being the distance from the center of the circular cylinder. To investigate the effect of the lattice dependence, furthermore, 2D computations of the tone noises radiated by a square cylinder and NACA0012 with a blunt trailing edge at high incidence and low Reynolds number are also investigate.

Numerical simulation of the flow behind a circular cylinder with a rotary oscillation (주기적으로 회전하는 원봉 주위의 후류에 관한 수치적 연구)

  • Baek, Seung-Jin;Seong, Hyeong-Jin
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.22 no.3
    • /
    • pp.267-279
    • /
    • 1998
  • A numerical study was made of flow behind a circular cylinder in a uniform flow, where the cylinder was rotationally oscillated in time. The temporal behavior of vortex formation was scrutinized over broad ranges of the two externally specified parameters, i.e., the dimensionless rotary oscillating frequency (.110.leq. $S_{f}$.leq..220) and the maximum angular amplitude of rotation (.theta.$_{max}$=15 deg., 30 deg. and 60 deg.). The Reynolds number (Re= $U_{{\inf}D}$.nu.) was fixed at Re=110. A fractional-step method was utilized to solve the Navier-Stokes equations with a generalized coordinate system. The main emphasis was placed on the initial vortex formations by varying $S_{f}$ and .theta.$_{max}$. Instantaneous streamlines and pressure distributions were displayed to show the vortex formation patterns. The vortex formation modes and relevant phase changes were characterized by measuring the lift coefficient ( $C_{L}$) and the time of negative maximum $C_{L}$( $t_{-C}$$_{Lmax}$) with variable forcing conditions.s.tions.s.s.s.

Vortex breakdown in an axisymmetric circular cylinder with rotating cones (회전하는 원뿔의 각도에 따른 축 대칭 원통형 용기에서의 와동붕괴에 관한 연구)

  • Kim, J.W.;Eum, Ch.S.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.9 no.1
    • /
    • pp.55-63
    • /
    • 1997
  • A numerical investigation has been made for flows in an axisymmetric circular cylinder with an impulsively rotating cone located at the bottom of the container. The axisymmetric container is completely filled with a viscous fluid. Major parameter for the present research is only the vertex angle of the cone, otherwise Reynolds number and aspect ratio of the vessel are fixed. Main interest concerns on the vortex breakdown of meridional circulation by impulsive rotation of the cone with respect to the longitudinal axis of the cylinder. Numerical method has been used to integrate momentum and continuity equations on a generalized body-fitted grid system. The pattern of vortex breakdown is quite different from that in a right circular cylinder with flat endwall disks. The flow visualization photograph of the preceeding work by Escudier is compared with the present numerical results and the two results are in good agreements. Also flow data are plotted to gain a deep understanding for the present phenomena of the vortex breakdown. The conclusions of this work are clearly explained by the classical theory of the vortex flows in a finite geometry.

  • PDF

Numerical Study on Uniform-Shear Flow Over a Circular Cylinder (원형실린더를 지나는 균일전단 유동에 관한 수치연구)

  • Choi, Won-Ho;Kang, Sang-Mo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.29 no.1 s.232
    • /
    • pp.139-150
    • /
    • 2005
  • The present study has numerically investigated two-dimensional laminar flow over a circular cylinder with a uniform planar shear, where the free-stream velocity varies linearly across the cylinder. Numerical simulations using the immersed boundary method are performed for the ranges of $50{\le}Re{\le}160,\;K{\le}0.2$, and B=0.1 and 0.05 where Re, K and B are the Reynolds number, the non-dimensionalized velocity gradient and the blockage ratio, respectively. Results show that the flow depends significantly on B as well as Re and K. It is found, especially, that the blockage effect accounts for some causes of apparent discrepancies among previous studies on the flow. With increasing K, the vortex shedding frequency and the mean drag stay nearly constant or slightly decrease whereas the mean lift, acting from the higher-velocity side to the lower, increases linearly. Flow statistics as well as instantaneous flow fields are presented to identify the characteristics of the flow and then to understand the underlying mechanism.

A Study on the Heat Transfer of In-line Heat Exchanger (직렬 열교환기의 열전달에 관한 연구)

  • Choe, S.Y.;Kim, M.S.
    • Journal of Power System Engineering
    • /
    • v.12 no.5
    • /
    • pp.48-53
    • /
    • 2008
  • Heat exchangers are commonly used in practice in a wide range of application, from heating and air-conditioning system in a household, to chemical processing and power production in a large plant. Heat transfer in a heat exchanger usually involves convection in each fluid and conduction through the wall separating the two fluids. The heat transfer characteristics of tube banks of in-line arrangements of four circular cylinders in a cross flow are compared for a range of tube locations and Reynolds numbers. The in-line pitch ratio was set up in the range of $1.5\leq L/d\leq4.0$, where L is the center to center distance and d the circular cylinder diameter, and in the Reynolds number of $13,000\leq Re\leq50,000$. The local and mean Nusselt numbers were estimated, and then. Subsequently, the heat transfer characteristics of four circular cylinders were found to exhibit a strong dependency upon the cylinder spacing and separation point of their upstream cylinders.

  • PDF

EFFECT OF WALL PROXIMITY ON DRAG AND LIFT FORCES ON A CIRCULAR CYLINDER (벽 근접 효과에 의한 물체의 항력 양력 변화)

  • Park, Hyun-Wook;Lee, Chang-Hoon;Choi, Jung-Il
    • Journal of computational fluids engineering
    • /
    • v.17 no.3
    • /
    • pp.68-74
    • /
    • 2012
  • Near-wall effect on wakes behind particles is one of the important factors in precise tracking of particles in turbulent flows. However, most aerodynamic force models for particles did not fully consider the wall effect. In the present study, we focused on changes of hydrodynamic forces acting on a particle depending on wall proximity. To this end, we developed an immersed boundary method with multi-direct forcing incorporated to a fully implicit decoupling procedure for incompressible flows. We validate the present immersed boundary method through two-dimensional simulations of flow over a circular cylinder. Comprehensive parametric studies on the effect of the wall proximity on the drag and lift forces acting on an immersed circular cylinder in a channel flow are performed in order to investigate general flow patterns behind the circular cylinder for a wide range of Reynolds number (0.01 ${\leq}$ Re ${\leq}$ 200). As the cylinder is closer to the wall, the drag coefficient decreases while the lift coefficient increases with a local maximum. Maximum drag and lift coefficients for different wall proximities decrease with increment of Reynolds number. Normalized drag and lift coefficients by their maximum values show universal correlations between the coefficients and wall proximity in a low Reynolds number regime (Re ${\leq}$ 1).

Flow control on the near wake of a circular cylinder attached with control rods (제어봉 부착에 따른 원형실린더 근접 후류 유동제어에 관한 실험적 연구)

  • Gim, Ok-Sok;Lee, Gyoung-Woo
    • Journal of Navigation and Port Research
    • /
    • v.32 no.6
    • /
    • pp.453-458
    • /
    • 2008
  • Flow characteristics of the control-rod-attached 2-dimensional circular cylinder was accomplished using by PIV techniques. model tests had been carried out with different diameters of control rods(d/D=0.1 through d/D=0.5). and the Reynolds number Re=15,000 based on the cylinder diameter(D=50mm) to predict the performance of the model and the two-frame grey-level cross-correlation method had been used to obtain the velocity distribution in the flow field. 50mm circular cylinder had been used during the whole experiments and measured results had been compared with each other. The measured results have been compared with each case. therefore this article identifies not only the mean velocity profiles but also the control effects of the control rods.

Simulation of fluid flow and particle transport around two circular cylinders in tandem at low Reynolds numbers (낮은 레이놀즈 수에서 두 개의 원형 실린더 주위 유동 및 입자 거동 해석)

  • Khalifa, Diaelhag Aisa Hamid;Jeong, S.;Kim, D.
    • Particle and aerosol research
    • /
    • v.17 no.4
    • /
    • pp.81-89
    • /
    • 2021
  • Understanding particle-laden flow around cylindrical bodies is essential for the better design of various applications such as filters. In this study, laminar flows around two tandem cylinders and the motions of particles in the flow are numerically investigated at low Reynolds numbers. We aim to reveal the effects of the spacing between cylinders, Reynolds number and particle Stokes number on the characteristics of particle trajectories. When the cylinders are placed close, the unsteady flow inside the inter-cylinder gap at Re = 100 shows a considerable modification. However, the steady recirculation flow in the wake at Re = 10 and 40 shows an insignificant change. The change in the flow structure leads to the variation of particle dispersion pattern, particularly of small Stokes number particles. However, the dispersion of particles with a large Stokes number is hardly affected by the flow structure. As a result, few particles are observed in the cylinder gap regardless of the cylinder spacing and the Reynolds number. The deposition efficiency of the upstream cylinder shows no difference from that of a single cylinder, increasing as the Stokes number increases. However, the deposition on the downstream cylinder is found only at Re = 100 with large spacing. At this time, the deposition efficiency is generally small compared to that of an upstream cylinder, and the deposition location is also changed with no deposited particles near the stagnation point.

Reynolds-number Effect on the Flow Past Two Nearby Circular Cylinders (두 개의 원형 실린더를 지나는 유동의 레이놀즈 수 효과)

  • Lee, Kyong-Jun;Choi, Choon-Bum;Yang, Kyung-Soo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.32 no.1
    • /
    • pp.30-38
    • /
    • 2008
  • As a follow-up of our previous studies on flow-induced forces on two identical nearby circular cylinders immersed in the cross flow at Re=100 and flow patterns past them,$^{(1,2)}$ we present Reynolds-number effects on the forces and patterns by further computing flows with Re=40, 50, 160. We consider all possible arrangements of the two circular cylinders in terms of the distance between the two cylinders and the angle inclined with respect to the main flow direction. Collecting all the numerical results obtained, we propose contour diagrams for mean force coefficients and their rms of fluctuation as well as for flow patterns and Strouhal number for each Re. These diagrams shed light on a comprehensive picture on how the wake interaction between the two cylinders alters depending on Re.

A Study on the Mechanical Characteristics of a Structure Reinforced by Cylindrical Reinforcement with Fins (핀을 가진 원통형 보강재로 보강된 구조물의 기계적 특성에 관한 연구)

  • 김형준;박정호;김현수;조우석
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.804-807
    • /
    • 2002
  • In general, the reinforcement of a structure is performed with cylinders. In this study, it is attempted to analyze the circular reinforcement with fins. And the maximum stress and deflection is investigated fur the circular reinforcement between two plates. The shape of models are : one which has only circular reinforcements of different diameters and one which has circular reinforcements with fins and one which has fin of same length and circular cylinders of different diameters. And in each model, there are two kinds; one is with upper and lower plates and the other with none. The results shows that the maximum stress is less in the model of circular reinforcement with fins than that in the model without fins. And the maximum stress of a model without upper and lower plate is less than that of a model with plates.

  • PDF