• Title/Summary/Keyword: Twist velocity

Search Result 52, Processing Time 0.027 seconds

High-velocity ballistics of twisted bilayer graphene under stochastic disorder

  • Gupta, K.K.;Mukhopadhyay, T.;Roy, L.;Dey, S.
    • Advances in nano research
    • /
    • v.12 no.5
    • /
    • pp.529-547
    • /
    • 2022
  • Graphene is one of the strongest, stiffest, and lightest nanoscale materials known to date, making it a potentially viable and attractive candidate for developing lightweight structural composites to prevent high-velocity ballistic impact, as commonly encountered in defense and space sectors. In-plane twist in bilayer graphene has recently revealed unprecedented electronic properties like superconductivity, which has now started attracting the attention for other multi-physical properties of such twisted structures. For example, the latest studies show that twisting can enhance the strength and stiffness of graphene by many folds, which in turn creates a strong rationale for their prospective exploitation in high-velocity impact. The present article investigates the ballistic performance of twisted bilayer graphene (tBLG) nanostructures. We have employed molecular dynamics (MD) simulations, augmented further by coupling gaussian process-based machine learning, for the nanoscale characterization of various tBLG structures with varying relative rotation angle (RRA). Spherical diamond impactors (with a diameter of 25Å) are enforced with high initial velocity (Vi) in the range of 1 km/s to 6.5 km/s to observe the ballistic performance of tBLG nanostructures. The specific penetration energy (Ep*) of the impacted nanostructures and residual velocity (Vr) of the impactor are considered as the quantities of interest, wherein the effect of stochastic system parameters is computationally captured based on an efficient Gaussian process regression (GPR) based Monte Carlo simulation approach. A data-driven sensitivity analysis is carried out to quantify the relative importance of different critical system parameters. As an integral part of this study, we have deterministically investigated the resonant behaviour of graphene nanostructures, wherein the high-velocity impact is used as the initial actuation mechanism. The comprehensive dynamic investigation of bilayer graphene under the ballistic impact, as presented in this paper including the effect of twisting and random disorder for their prospective exploitation, would lead to the development of improved impact-resistant lightweight materials.

The Effect of Upper Extremity Usage and Length of Training to the Function of Dance Turn (상지 이용 유무와 훈련 기간이 무용 회전 동작의 기능에 미치는 영향)

  • Park, Yang-Sun;Lim, Young-Tae
    • Korean Journal of Applied Biomechanics
    • /
    • v.17 no.1
    • /
    • pp.175-184
    • /
    • 2007
  • The first purpose of this study was to compare kinematic variables during spinning motion with or without upper extremity and identify the most effective spinning method. The second purpose of this study was to compare functional difference between novice and elite dancers with the term of training. Ten experienced female dancers and ten novices were recruited as subjects for this study. Elite group was asked to perform turn motion with three types of upper extremity. Novice group has taken training of spotting technique for five weeks. Four Falcon HiRES cameras were used to analyze kinematic variables including head angular velocity and CG displacement during spinning. These data were sampled before training, after 3-week, and 5-week of training. Eight different events in two consecutive turns were defined for statistical comparison. One-way ANOVA was performed to compare among the kinematics of turning motion with three types of upper extremity. Independent t-test also used to compare kinematics between elite and novice at three different length of training. As results, spinning with both arm increased angular velocity and stability compared to the turning motion with one arm or with arm strapped and found out that the turn with both arm was the most effective way of spin. Also, for novice dancers, three weeks of training were needed to complete spinning motion.

Geometrical Velocity and Force Analyses on Planar Serial Mechanisms (평면 직렬 메커니즘의 기하학적 속도 및 힘 해석)

  • Lee, Chan;Lee, Jeh Won;Seo, TaeWon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.7
    • /
    • pp.648-653
    • /
    • 2015
  • The kinematics with the instantaneous motion and statics of a manipulator has generally been proven algebraically. The algebraic solutions give very simple and straightforward results but the solutions do not have any meaning in physics or geometry. Therefore it is not easy to extend the algebraic results to design or control a robotic manipulator efficiently. Recently, geometrical approach to define the instantaneous motion or static relation of a manipulator is popularly researched and the results have very strong advantages to have a physical insight in the solution. In this paper, the instantaneous motion and static relation of a planar manipulator are described by geometrical approach, specifically by an axis screw and a line screw. The mass center of a triangle with weight and a perpendicular distance between the two screws are useful geometric measures for geometric analysis. This study provides a geometric interpretation of the kinematics and statics of a planar manipulator, and the method can be applied to design or control procedure from the geometric information in the equations.

Immediate Effects of Lumbar Rotational Mobilization on the One-Legged Standing Ability in Healthy Individuals: A Randomized Controlled Trial

  • Heo, Seo Yoon;Kim, Bo Kyung;Moon, Ok Kon;Choi, Wan Suk
    • Journal of International Academy of Physical Therapy Research
    • /
    • v.9 no.3
    • /
    • pp.1521-1527
    • /
    • 2018
  • The original focus of this study was to investigate the immediate effects of lumbar rotational mobilization on the one-legged standing ability. Fifteen subjects (6 men and 9 women, mean age = 22.77 (SD = 1.21), mean height = 165.46cm (SD = 11.65), mean weight = 61.46kg (SD = 8.29) volunteers from healthy individuals were recruited and randomized to a lumbar rotational mobilization (LRM) group and a trunk rotational exercise (TRE) group. Mobilization (grade 3 or 4) was applied to the LRM group on the lumbar spine (L1 to L5) in a side-lying, and trunk twist exercise (left and right side) was applied the to the TRE group with lunge position. Center of pressure (COP) and the velocity of the center of pressure (VCOP) of each participant were measured as a balance ability through one leg standing position. Results are as follows. In within-group difference, the COP of the LRM group reduced during standing with the right foot, but the VCOP change of the LRM was not statistically significant. In between-groups difference, COP of TRE group was decreased compared with LRM group only during left leg standing in the eyes (p <.05). The results of this study suggest that LRM is more effective than TRE in improving balance ability.

The Study on Cutting Characteristic according to a Shape, Size and Array of Cutter for Paper Shredder (문서세단기의 커터날 형상, 크기, 배열과 절단특성에 관한 연구)

  • Lee, Wi-Ro;Lee, Dong-Gyu;Kim, Min-Ho
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.1 s.178
    • /
    • pp.56-63
    • /
    • 2006
  • The aim of this study is to find the best cutting conditions as analyzing cutting process of paper shredder and shape of cutter. The test has been done variation of torque and cutting velocity according to load. When shape of cutter and distance between cutter and shaft are changed, The variation of cutting force according to cutting angle and load is geometrically analyzed. The result of geometrical analysis is presented that the radius and array of cutter is the method to improve torque of paper shredder. In this paper it is presented as basic method of design to improve cutting performance of paper shredder.

Spanwise Aerodynamic Loads along the Wind Turbine Blade (풍력터빈 블레이드상의 공력하중분포 해석)

  • Lee, Kyo-Yeol;Ryu, Ki-Wahn
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.61.2-61.2
    • /
    • 2011
  • The spanwise aerodynamic loads of the wind turbine blade are investigated numerically. The blade shape such as twist and chord length along the blade span is obtained from the procedure of aerodynamically optimal design. The rated tip speed ratio and the rated wind velocity are set to 7 and 12m/s respectively. The BEM method is applied to obtain both the aerodynamic performance of the wind turbine (Fig.1) and the spanwise aerodynamic loads along the blade span including Prandtl's tip loss factor. The maximum running power coefficient is occurred around 90% radial position from hub (Fig.2). The distributed aerodynamic loads along the blade span can be used for structure analysis.

  • PDF

Study on Low noise, High Performance Automobile Cooling Fan Development Using Freewake and CFD Analysis (자유후류법과 CFD 해석을 통한 저소음 고효율 자동차용 냉각팬 개발에 관한 연구)

  • ;;Renjing Cao
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.847-847
    • /
    • 2004
  • Automobile cooling fans are operated with a radiator module. To design low noise, high performance cooling fan, radiator resistance should be considered in the design process. The system (radiator) resistance reduces axial velocity and increases effective angle of attack. This increasing effective angle of attack mechanism causes blade stall, performance decrease and noise increase. In this paper, To analyze fan performance, freewake and 3D CFD calculations are used To design high performance fan with consideration of system resistance, optimal twist concept is applied through momentum and blade element theory. To predict fan noise, empirical formula and acoustic analogy methods are used.

  • PDF

Analysis of the Dimensionless Torque in Cone Drum False Twisting Mechanism

  • Lee, Choon-Gil;Kang, Tae-Jin
    • Fibers and Polymers
    • /
    • v.4 no.4
    • /
    • pp.161-168
    • /
    • 2003
  • An investigation of the dimensionless torque in the newly developed cone drum twister texturing mechanism is reported. The cone drum twister is one of the outer surface contacting friction-twisting devices in false-twist texturing. In this cone drum twister, a filament yam passes over the surface of the cone drum that rotates by the passing yarn without a special driving device. This research is composed of the theoretical analysis of the false twisting mechanism and the experimental analysis at room temperature. The equations have been derived which shows interrelationship of the conical angle of cone drum, the wrapping angle, the drag angle, and the yam helix angle. Theoretical values of dimensionless torque were calculated and were compared with the experimental results. It is shown that, as the conical angle and the projected wrapping angle increased, the dimensionless torque also increased. But the conical angle was reached to ${30.75}^{\circ}C$, the dimensionless torque decreased.

Numerical Analyses of Three-Dimensional Thermo-fluid flow through Mixing Vane in A Subchannel of Nuclear Reactor (원자로 부수로내 혼합날개를 지나는 삼차원 열유동 해석)

  • Choi, Sang-Chul;Kim, Kwang-Yong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.3
    • /
    • pp.311-318
    • /
    • 2003
  • The present work evaluates the effects of mixing vane shape on the flow structure and heat transfer downstream of mixing vane in a subchannel of fuel assembly. by obtaining velocity and pressure fields. turbulent intensity. flow-mixing factors. heat transfer coefficient and friction factor using three-dimensional RANS analysis. Four different shapes of mixing vane. which were designed by the authors were tested to evaluate the performances in enhancing the heat transfer. Standard k-$\varepsilon$ model is used as a turbulence closure model. and. periodic and symmetry conditions are set as boundary conditions. The flow blockage ratio is kept constant. but the twist angle of mixing vane is changed. The results with three turbulence models were compared with experimental data.

Aerodynamic Characteristics of Neighboring Building Exposed to Twisted Wind

  • Lei Zhou;KamTim Tse;Gang Hu
    • International Journal of High-Rise Buildings
    • /
    • v.11 no.4
    • /
    • pp.241-263
    • /
    • 2022
  • The conventional wind and twisted-wind effect on aerodynamic properties of neighboring buildings arranged in side-by-side and tandem systems at 2B and 5B spacings are systematically investigated by large eddy simulation. Different physical interactions between different wind profiles and neighboring buildings will be deeply understood. The neighboring-building system under two different types of wind profiles, i.e., conventional wind profile (CWP), twisted wind profiles (TWP) with the maximum twisted angle of 30°, is used to evaluate the variation of physical mechanism between wind and buildings. Aerodynamic characteristics including mean and RMS pressure coefficient, and velocity field were systematically analyzed and compared between different scenario. It was found that the distribution of mean pressure, root-mean-square x velocity and the streamline of wind flow for TWP greatly deviated from CWP, and the effect of TWP on the downstream building, was drastically different from that of CWP, such as the size of vortexes after the lower stream building being bigger when exposed to TWP, and the mean pressure distribution on the building surfaces are also different. Moreover, evidence of buildings arranged in side-by-side and tandem configurations having interchangeable properties under TWP was also discovered, that two buildings being arranged side-by-side exposed to TWP could be identified as being arranged in tandem with a different wind twist angle, or vice versa.