• 제목/요약/키워드: Twin-Fluid Spray

검색결과 67건 처리시간 0.025초

희박 분무영역에서의 분무냉각 막 비등 열전달에 관한 연구 (Study on Film Boiling Heat Transfer of Spray Cooling in Dilute Spray Region)

  • 김영찬
    • 대한기계학회논문집B
    • /
    • 제29권2호
    • /
    • pp.279-286
    • /
    • 2005
  • This study presents experimental results on the heat transfer coefficients in the film boiling region of spray cooling for actual metallurgical process. In this study, the heat flux distributions of a two dimensional dilute spray impinging on a hot plate were experimentally investigated. A stainless steel block was cooled down from intial temperature of about $800^{\circ}C$ by twin fluid (air-water) flat spray. It was found from the experimental results that the heat transfer area was classified into the stagnation region and wall-flow region. In the stagnation region, the experimental data of local heat transfer coefficient was closely correlated with the local droplet-flow-rate supplied from the spray nozzle directly. Thus, the local heat transfer coefficients are in good agreement with the predicted values from the correlations proposed by our previous study. In wall-flow region, however, remarkable differences are observed between experimental data and predicted values because the number of rebound droplets increase with increasing the distance from the stagnation point.

물-공기 원추형 분무시스템에 있어서 분무냉각 막비등 열전달에 관한 연구 (Study on Film Boiling Heat Transfer of Spray Cooling in Air-Water Full Cone Spray System)

  • 김영찬;윤승민
    • 대한기계학회논문집B
    • /
    • 제30권12호
    • /
    • pp.1236-1242
    • /
    • 2006
  • The local heat flux of spray cooling in the film boiling region were experimentally investigated for the spray region of $D_{max}$ = $0.005{\sim}0.03m^3/(m^2s)$. A twin-fluid full cone spray nozzle was employed for the experiment and the distributions of droplet flow rates were obtained for air-water full cone sprays. A stainless steel block was cooled down from initial temperature of about $800^{\circ}C$ by full cone spray. In the region near the stagnation point, it was found that the experimental data are in good agreement with the results predicted from the correlations between the local heat transfer and the local droplet flow rate proposed in the previous report. However, it was found that the experimental data of $D_r$ > $0.01m^3/(m^2s)$ are a little smaller than the results predicted from the correlations.

이중공기공급 이유체노즐의 선회각 변화에 따른 분무특성 (Effect of Swirl Angle on the Atomization Characteristics in Two-Fluid Nozzle with Dual Air Supplying System)

  • 김의수;강신명;최윤준;김덕진;이지근;노병준
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2008년도 춘계학술대회논문집
    • /
    • pp.54-60
    • /
    • 2008
  • The atomization characteristics of the dual air supplying twin-fluid nozzle were investigated experimentally using PIV and PDA systems. The two-fluid nozzle is composed of three main parts: the feeding injector to supply fluid that is controlled by a PWM (pulse-width modulation) mode, the adaptor as a device with the ports for supplying the carrier and assist air and the main nozzle to produce the spray. The main nozzle has the swirl tip with four equally spaced tangential slots, which give the injecting fluid an angular momentum. The angle of the swirl tip varied with 0$^{\circ}$ 30$^{\circ}$, 60$^{\circ}$ and 90$^{\circ}$, and the ratios of carrier air to assist air and ALR(total air to liquid) were 0.55 and 1.23, respectively. The macroscopic behavior of the spray was investigated using PIV system, and the mean velocity, turbulent intensity and SMD distributions of the sprays were measured using PDA system. As the results, the mean axial velocity at the spray centerline decrease with the increase of the swirl angle. The turbulent intensities of the axial and radial velocity were increased with the increase of the swirl angle. The mean SMD (Sauter mean diameter) of the radial direction along the axial distance shows the lowest value at the swirl angle of 60$^{\circ}$.

  • PDF

선회형 이유체노즐의 노즐캡 형상에 따른 분무특성 (Effect of Nozzle Cap Geometry for Swirl-Type Two-Fluid Nozzle on the Spray Characteristics)

  • 최윤준;강신명;김덕진;이지근
    • 한국분무공학회지
    • /
    • 제13권3호
    • /
    • pp.134-142
    • /
    • 2008
  • In the case of heavy duty diesel engines, the Urea-SCR system is currently considered to reduce the NOx emission as a proved technology, and it is widely studied to get the high performance and durability. However, the nozzles to inject the urea-water solution into the exhaust pipe occur some problems, including the nozzle clogging, deposition of urea-water solution on the inner wall of the exhaust pipe, resulting in the production of urea salt. In this study, a swirl-type twin-fluid nozzle to produce more fine droplets was used as a method to solve the problems. The effect of the nozzle cap geometry, including the length to diameter ratio ($l_o/d_o$) and chamfer, on the spray characteristics were investigated experimentally. The length to diameter ratio of nozzle cap were varied from 0.25 to 1.125. The chamfer angle of the nozzle cap was constant at 90o. The mean velocity and droplet size distributions of the spray were measured using a 2-D PDA (phase Doppler analyzer) system, and the spray half-width, AMD (arithmetic mean diameter) and SMD (Sauter mean diameter) were analyzed. At result, The larger length to diameter ratio of nozzle cap were more small SMD and AMD. The effect of the chamfer did increase the radial velocity, while it did not affect the atomization effect.

  • PDF

저압 TBI용 분사밸브의 분무특성에 관한 연구 (I) (Study on the Spray Characteristics in TBI Injector with Low Pressure)

  • 전흥신;임종한;이택희
    • 대한기계학회논문집
    • /
    • 제17권12호
    • /
    • pp.3179-3186
    • /
    • 1993
  • The study on the spray characteristics of TBI(Throttle Body Injection) injector has been carried out in this paper. The objective of this study is to improve the performance of TBI injector. The increase in the injection pressure and the utilization of assisted air are considered. The spray patten of TBI injector take the hollow-cone shape with $60^{\circ}~70^{\circ}$ spray angle regardless of injection pressure and injection pulse width. SAMD(Sauter Mean Diameter) of water in TBI injector are 510-$550{\mu}m$ and 310-$370{\mu}m$ respectively when injection pressures are $0.75 kgf/cm^{2}$ and $2.8 kgf/cm^{2}$. Then SMD of gasoline is estimated 380~$410{\mu}m$ and 230~$280{\mu}m$ respectively. The improvement of spray characteristics in TBI injector can be obtained with assisted air. If $W_{A}/W_{L}$ was over 0.2, SMD of water can be made under $50{\mu}m$.

전기수력학적 힘이 분무특성에 미치는 영향 (Effects of the Electrohydrodynamic Forces on Characteristics of Spray)

  • 이종호;권순도;김상헌;문수연;이충원
    • 한국분무공학회지
    • /
    • 제6권1호
    • /
    • pp.44-51
    • /
    • 2001
  • The distributions of the SMD and behavior of 2% $NH_4H_2PO_4$ spray discharged from a fan-spray twin fluid type nozzle are measured and observed. The spray characteristics, according to the variation in the applied voltages, are demonstrated using the PMAS (particle Motion Analysis System) and the CCD camera, respectively. The preliminary experiments are executed to select an optimum condition for solidifying a galvanized coating layer in the uncharged condition before carrying out the main experiments. The liquid and air pressure of $0.07kgf/cm^2\;and\;0.15kgf/cm^2$ can be considered the optimum conditions to use in the main experiment. As the applied voltage increases, the frequent range of relatively large droplets diminishes. Thus, the distributions of drop diameter in the charged spray are more uniform than these in the uncharged condition. This is explained by recognizing that repulsive forces among droplets with the charges of the same sign cause them to be uniform.

  • PDF

Atomize법에 의한 용융소재의 고효율 미세화에 관한 연구 (제3보 : 애토마이저의 미립화 기구와 특성) (A STUDY ON HTGH-EFFICIENCY ATOMIZATION OF MOLTEN MATERIALS (PART 3 : MECHANISM AND CHARACTERISTICS OF ATOMIZATION))

  • 오재건;권순익
    • 한국분무공학회지
    • /
    • 제4권1호
    • /
    • pp.19-26
    • /
    • 1999
  • An experimental study of twin-fluid atomization for powder metallurgy has been conducted using a specially designed atomizer in which liquid is first spread into a thin sheet and then exposed on both sides to high-velocity air. Inner air jet worked for supplying liquid and outer air jets disintegrated liquid sheet. The first result of this study were confined to the effect of atomizing quality through experiments with water. The experimental data will be extend to include the influence of atomizing air velocities on mean particle size through experiments with molten material. An experimental equation on the relationship between SMD and the related parameters was taken out; $$SMD=0.00302\frac{{(\sigma_L\;\rho_L\;D_L)}^{0.5}}{\rho_A(V_1+1.155\;V_2)/2}(1+\frac{W_L}{(W_{A1}/3.33)+W_{A2}})+0.0148(\frac{{\mu_L}^2}{\sigma_L\;\rho_L})^{0.425} \;{D_L}^{0.575}(1+\frac{W_L}{(W_{A1}/3.33)+W_{A2}})^2$$.

  • PDF

Atomize법에 의한 용융소재의 고효율 미세화에 관한 연구(제2보 : 이젝터의 원리를 이용한 액체노즐의 액체공급 및 액막생성 기구와 특성) (A Study on the High-Efficiency Atomisation Molten Materials (PART 2 : A Study on the Mechanism of Liquid Supplying and Film Formation by Applying the Ejector Principle))

  • 오재건;조일영
    • 한국분무공학회지
    • /
    • 제3권2호
    • /
    • pp.14-23
    • /
    • 1998
  • The negative pressure as much as 10's mmHg is demanded at nozzle inside, in case of atomizing the large density molten materials. by conventional air jet nozzle. In this study, suction type fluid nozzle is designed by applying the ejector principle in order to clarify the air flow of nozzle inside, mechanism of liquid suction and liquid film formation. The results of this experimental study areas follows. Suction force of liquid is magnified by using liquid nozzle, and it is able to supply the liquid stable. Negative pressure at nozzle inside is varied by throttle angle of liquid nozzle, position and outer diameter of air jet nozzle, and have a influence on liquid suction quantity and liquid film formation.

  • PDF

노즐특성에 따른 MIST-COOLING 열전달에 관한 실험적 연구 (The Effect of Nozzle Characteristics on the Mist-Cooling Heat Transfer)

  • 이진원;강영규;백병준;박복춘
    • 열처리공학회지
    • /
    • 제5권3호
    • /
    • pp.171-178
    • /
    • 1992
  • The effect of nozzle characterristics on the mist-cooling heat transfer was investigated under the various flow conditions. Two different types of twin fluid nozzle were used, one is a $90^{\circ}$ angle tip nozzle with needle and the other is a $90^{\circ}$ angle tip non-needle nozzle. The cooling rate from the heated surface was measured and obtained the boiling curve as a function of surface temperature. An immersion sampling was employed for the measurement of droplet size of the spray. As a result of this experiment, the liquid sheet type nozzle shows better atomization when the mass ratio Mr>2.0, and collects more liquid droplets on the heated surface that results in better cooling effect. It was found that the maximum heat flux and heat transfer coefficient increased with increase in the volumetric flow rate, whereas the maximum heat flux decreased with increase in spray distance. The cooling effect depends upon the amount of collected droplet and droplet size, but it strongly depends upon the amount of collected droplet.

  • PDF

CWM의 미립화특성에 대한 실험적 연구 (An Experimental Study on the Atomization Characteristics of Coal-Water-Mxture)

  • 김윤태;전영남;채재우
    • 대한기계학회논문집
    • /
    • 제14권5호
    • /
    • pp.1330-1336
    • /
    • 1990
  • The factors to act on atomization of liquid fuel are viscosity, geometric shape of nozzle, atomizing pressure, etc. Most of high viscous liquid fuels show decrease in viscosity by raising the preheat temperature, but the viscosity of liquid fuel like CWM does not readily change with fuel temperature. As an experimental study to investigate the atomizing characteristics of CWM, CWM fuel is atomizing with a twin-fluid atomizer, and the effects of the geometric shape of spray nozzle on atomization are investigated by measuring the Sauter`s Mean Diameter (SMD) of CWM. The summarized results obtained in this study are as follows ; (1) As the ratio of the mass flows of atomizing air to that of fuel (W$_{a}$ /W$_{1}$) increases, 능 decreases when fuel temperature is constant. (2) At the ratio (t/d) 4 of thickness (t) of spray nozzle hole to the diameter (d) of the hole, there is the best atomization. And SMD decreases when t/d is between 1 to 4 and increases when t/d > 4.