• Title/Summary/Keyword: Twin roll strip casting

Search Result 29, Processing Time 0.027 seconds

An Analysis of Hot-Rolling in the Twin-Roll Strip Casting Process by using the Slab Method (슬랩법을 이용한 쌍롤식 박판주조 공정의 열간 압연 해석)

  • Shim, Hyun-Bo
    • Transactions of Materials Processing
    • /
    • v.3 no.1
    • /
    • pp.63-83
    • /
    • 1994
  • In this paper, the slab method have been applied to investigate the strip casting process in which hot coil is produced from molten steel directly. In the twin roll strip casting process, molten steel supplied by the nozzle cools and solidifies due to the heat extraction effect of the rolls and hot rolling of the solidified shell takes place simultaneously. The analysis of hot rolling has been carried out by using the existing results of solidification analysis for the twin roll strip casting process. The current slab method provides basic design data such as roll separation force, rolling torque, rolling power as well as end dam separation force which are required to design strip caster. The effect of friction on the basic process parameters are investigated also. It is shown that the use of appropriate friction coefficient is important and that the characteristics of hot rolling in the twin-roll strip casting process is quite different from the conventional hot rolling processes.

  • PDF

Effect of Pouring Temperature on the Casting Characteristics and Microstructure of Twin-roll Cast BCuP Alloy (BCuP계 합금의 쌍롤주조시 주조특성과 미세조직에 미치는 주입온도의 영향)

  • Joo, Dae-Heon;Kim, Myung-Ho
    • Journal of Korea Foundry Society
    • /
    • v.21 no.4
    • /
    • pp.232-238
    • /
    • 2001
  • Experimental study on the twin roll strip casting of BCuP-5(Cu-15wt%Ag-wt5%P) alloy was carried out using laboratory scale horizontal type twin roll caster. In this study, among the various operating parameters, such as tundish angle, contact angle, pouring temperature, roll speed, presetting gap of the rolls and kinds of roll and tundish materials, effect of pouring temperature for strip casting of BCuP-5 alloy which has long freezing range of about $170^{\circ}C$ was mainly investigated. BCuP-5 alloy strip was successfully produced when pouring molten metal at lower temperature than its liquidus temperature. Microstructure of the cast strip consists of primary Cu and eutectic. Especially the size of primary Cu phase increased with decreasing of pouring temperature.

  • PDF

The Effect of Shrink fit on the Thermal Crown Analysis in Twin Roll Strip Casting Process (쌍롤형 박판주조공정에서 열박음을 고려한 열적 크라운해석)

  • 박철민;박경진
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.11
    • /
    • pp.200-210
    • /
    • 2002
  • In twin roll strip casting process, coupled analyses of heat transfer and deformation for the cast roll are carried out by using the finite element program MARC to examine the thermal crown. Shrink fit effect and plastic deformation are considered. The results shows that the thermal crown is greatly influenced by shrink ft and that the thermal crown for POSCO Pilot Caster 2 Copper Roll has “M” shape. The effects of several factors on thermal crown are also investigated. The amount of thermal crown increases as heat flux, casting speed, steeve thickness and casting roll width increase and decreases as the casting roll diameter increases.

Analysis of Thermal Stress and Deformation of Casting Roll in Twin Roll Strip Casting Process (쌍롤형 박판주조공정에서 주조 롤의 열응력 및 열변형 해석)

  • Park, Cheol-Min;Kim, Wan-Su;Park, Gyeong-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.9
    • /
    • pp.1943-1951
    • /
    • 2002
  • The casting roll design is one of the most important requirements in twin roll strip casting process. Coupled analyses of heat transfer and deformation for the cast roll are carried out by use of the finite element program MARC to examine the thermal stress and deformation. The effects of several factors on thermal stress and deformation are also investigated. The amount of thermal stress increases when the ni thickness increases and when the casting speed and the copper sleeve thickness decrease.

Optimal Design of Strip Casting Roll (박판 주조 롤의 최적설계)

  • Park, Cheol-Min;Kang, Tae-Wook;Park, Gyung-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.11
    • /
    • pp.2466-2473
    • /
    • 2002
  • In twin roll strip casting process, the design of casting roll is the most important equipment for producing strip. Analyses of heat transfer and deformation for the casting roll are carried out by using the finite element program, ANSYS. Both the elastic deformation and the elasto-plastic deformation under a thermal load are considered in the analysis. Optimization to minimize the volume of roll is performed under the various thermal loads such as the heat flux and the roll speed. Design variables are defined by diameters and positions of the cooling hole in the roll , Although the thermal load remarkably varies, the design variables and objective function are found to be consistent.

Analysis of the Molten Metal Direct Rolling for Magnesium Considering Thermal Flow Phenomena (열 유동 현상을 고려한 마그네슘 용탕 직접 압연공정 해석)

  • Bae J.W.;Kang C.G.;Kang S.B.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.10a
    • /
    • pp.786-789
    • /
    • 2005
  • The proper parameters in a twin roll strip casting are important to obtain the stabilization of the Mg sheet. What is examined in this paper is the quantitative relationships of the important control parameters such as the roll speed, height of pool region, outlet size of nozzle, solidification profile and the final point of solidification in a twin roll strip casting Unsteady conservation equations were used for transport phenomena in the pool region of a twin roll strip casting in order to predict a velocity, temperature distributions of fields and a solidification process of molten magnesium. The energy equation of cooling roll Is solved simultaneously with the conservation equations of molten magnesium In order to consider the heat transfer through the cooling roil. The finite difference method (2-D) and the finite element method (2-D) are used in the analysis of pool region and cooling roil to reduce computing time and to improve the accuracy of calculation respectively.

  • PDF

Modeling and adaptive optimal control of a twin roll strip caster (쌍롤형 박판주조기의 모델링과 적응최적제어)

  • 김성훈;홍금식;이교일
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.325-328
    • /
    • 1997
  • In this paper the modeling and control of a twin roll strip caster is investigated. Mathematical models for the strip casting process are obtained by analyzing five critical areas such that the molten steel level in the pool, solidification process, roll separating force and torque, roll dynamics including hydraulic actuators, and roll drive system. A two-level control strategy is proposed. At lower level, three local subsystems are independently feedback-controlled by suitable local controllers which perform well to the behaviors of each subsystem. They are a variable structure control of the molten steel level in the pool, an adaptive predictive control of the roll gap which is directly related to the strip thickness, and an $H^{\infty}$ control of the roll drive system. At higher level, all reference signals to the lower level subsystems are generated by an optimal controller in the perspective of regulating the strip thickness and roll separating force. Simulations are provided..

  • PDF

The Study on Automation and Development of Strip Continuous Casting by Twin Roller Type (쌍로울형 박판연속주조공정의 개발과 자동화에 관한 연구)

  • Lee, Sang-Mae;Kim, Young-Do;Baek, Nam-Ju;Gang, Chung-Gil
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.7 no.1
    • /
    • pp.37-52
    • /
    • 1990
  • In this study, the characteristics of cooling and rolling during strip casting process is obtained in comparison with the experimental and analytical results. The prupose of this study is to effectively analyze the thermal and mechanical deformation of roller applying the results of the heat transfer and the pressure distribution to boundary conditions. And then the relation between strip thickness and roll deformation is shown. The second purpose is to obtain the proper condition of the continuous casting for stainless steel. The summary and conclusions can be made on the basis of the results obtained by the theories and experiments. a) The strip casting condition for the fine surface quality of tin-alloy as-cast material was obtained in accordance with the velocity of roll rotation and initial roll gap. b) The experimental condition that the dimension of the cast strip thickness coincide with that of the initial roll gap was according to the experimental result of continuous casting by twin-roll type. c) The thermoelastic finite element model to calculate the roll deformation is represented. Thermoelastic model prediction for the roll deformation are in good agreement with the experimental results considering the thermal expansion of the roll. d) The higher cooling rates were obtained by a twin-roller quenching technique. Also quenched microstructure of the rapidly solidified shell was verified. e) The magnitude of roll deformation due to the thermal expansion and roll separating force is quantit- atively represented in the analysis of continuous casting for stainless steel.

  • PDF

Numerical Analysis on Flow and Heat Transfer in Twin-Roll Strip Casting Using an Unstructured Fixed-Grid System (비정렬 고정격자계를 이용한 쌍롤 박판주조에서의 유동장 및 열전달 해석)

  • Lee, Jun-Sik;Lee, Ju-Myeong;Jeong, Jae-Dong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.5
    • /
    • pp.648-657
    • /
    • 2002
  • This paper presents a numerical analysis on the solidification characteristics in twin-roll strip casting. Unstructured fixed-grid system was employed to deal with phase change. Melting of pure gallium was analyzed to confirm the validity of present program in both structured and unstructured grid systems. An algorithm for simultaneous calculation of the temperature in the roll and the molten metal pool was developed. The flow field in the pool and heat transfer features between pool and roll were shown. The effect of process parameters was also studied. Since the geometry of the molten metal Pool significantly deforms along the casting direction, unstructured grid system is more efficient. The unstructured grid system gives almost the same accuracy, even though the number of grids is only 60% of the structure done.

Thermal Analysis on Twin-Roll Type Strip Continuous Casting Process Considering Contact Thermal Resistance between Molten Metal and Cooling Roll (쌍롤식 박판 연속주조공정에 있어서 용탕과 냉각롤의 접촉 열저항을 고려한 전열해석)

  • Kim, Y.D;Kim, C.G
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.1
    • /
    • pp.189-205
    • /
    • 1996
  • The twin-roll type strip continuous casting process(or direct rolling process) of steel materials is characterized by two rotating water cooled rolls receiving a steady supply of molten metal which solidifies onto the rolls. A solidification analysis of molten metal considering phase transformation and thermofluid is performed using finite diffefence method with curvilinear coordinate to reduce computing time and molten region analysis with arbitrary shape. An enthalpy-specific heat method is used to determine the temperatures inthe roll and the steel. The temperature distribution of cooling roll is calculated using two dimensional finite element method, because of complex roll shape due to cooling hole in rolls and improvemnt accuracy of calculation result. The energy equaiton of cooling roll is solved simultanuously with the conservation equaiton of molten metal in order to consider heat transfer through the cooling roll. The calculated roll temperature is compared to experimental results and the heat transfer coefficient between cooling roll surface and rolling material(steel) is also determined from comparison of measured roll temperature and calculated temperature.