• Title/Summary/Keyword: Twin Screw Extrusion

Search Result 79, Processing Time 0.035 seconds

Increase of Solubility of Ginseng Radix by Extrusion Cooking (압출성형 공정에 의한 인삼의 수용성 성분 증대)

  • Jee, Ho-Kyun;Cho, Young-Jin;Kim, Chong-Tai;Jang, Young-Sang;Kim, Chul-Jin
    • Korean Journal of Food Science and Technology
    • /
    • v.38 no.3
    • /
    • pp.361-368
    • /
    • 2006
  • Extruded ginseng was manufactured using twin-screw extruder under 300 rpm screw speed, 21 kg/hr feed rate, $80-150^{\circ}C$ extrusion temperature, and by addition of water (12.1-30.6%). Extraction yield and contents of total carbohydrate and uronic acid in extruded ginseng at room temperature extraction (RT) increased with increasing extrusion temperature, whereas those of boiling temperature extracts (BT) were not affected by increasing extrusion temperature. Contents of nonstarch polysaccharide (NSP) in RT and BT extracts increased 340 and 142%, respectively, compared to that of raw ginseng. Main sugar compositions of NSP in RT and BT extracts were arabinose, galactose, and glucose. Extraction yields of total and crude saponins in extruded ginseng at optimize extrusion condition were higher than that of raw ginseng. In RT extracts, molecular weights of polysaccharides from raw were higher than that of extruded ginseng polymer, whereas in BT extracts molecular weights of polysaccharides from extruded ginseng were higher than those of raw ginseng polysaccharides.

Study on the physical properties of nylon66/glass fiber composites as a function of extrusion number (나일론66/유리섬유 복합체의 압출횟수에 따른 특성 연구)

  • Lee, Bom Yi;Kim, Youn Cheol
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.6
    • /
    • pp.3990-3996
    • /
    • 2014
  • Because the physical properties can be decreased when a Nylon 66/glass fiber composite is injected into a mold over $300^{\circ}C$, a systematic study of the thermal history in the case of re-use is needed. Nylon 66/glass fiber extrudates as a function of the extrusion number were prepared using a twin screw extruder at 305/290/273/268/265/$260^{\circ}C$. The chemical structure, thermal properties, melt index, crystal structure, Izod impact strength, and rheological properties were measured by Fourier transform infra-red (FT-IR), melt indexer, DSC, TGA, XRD, Izod impact tester, and dynamic rheometer. The FT-IR spectra indicated that the number of extrusions did not affect the chemical structure. The decrease in molecular weight with increasing extrusion number was confirmed by the melt index and the complex viscosity of extrudates. Based on the DSC and TGA results, the thermal history had no effect on the melting temperature, regardless of the number of extrusions, but the degradation temperature decreased up to $20^{\circ}C$ with increasing extrusion number. The Izod impact strengths of the extrudates were found to decrease with increasing extrusion number. No structural change after extrusion was also confirmed because there was no change in the slope and shape of the G'-G" plot.

Effects of Peroxides on the Properties of Reclaimed Polypropylene/Waste Ground Rubber Tire Composites Prepared by a Twin Screw Extrusion

  • Kim, Seonggil;Lee, Minji;Lee, Hyeongsu;Jeong, Hobin;Park, Yuri;Jhee, Kwang-Hwan;Bang, Daesuk
    • Elastomers and Composites
    • /
    • v.51 no.1
    • /
    • pp.17-23
    • /
    • 2016
  • In this study, the reclaimed polypropylene (RPP) and waste ground rubber tire (WGRT) were used to simulate the thermoplastic vulcanizate (TPV) for cost reduction and resources recycling. Also, we examined the effects of dicumyl peroxide (DCP) and 2,5-dimethyl-2,5-di-(tert-butylperoxy)-hexane (DTBPH) as peroxide type cross-linking agents to enhance the properties of TPV's. The components of RPP and WGRT were fixed at 30 and 70 wt%, and DCP and DTBPH were added in the concentrations from 0.5 to 1.5 phr, respectively. RPP/WGRT composites with different contents of DCP and DTBPH were prepared by a modular intermeshing co-rotating twin screw extruder. The Young's modulus of composites were decreased with increasing peroxides contents. On the other hand, tensile strength, elongation at break, and impact strength of the composites were increased with peroxide contents. We also confirmed that interfacial adhesion between RPP and WGRT was considerably improved by adding the peroxides. Taken together, DTBPH added RPP/WGRT composites exhibited better mechanical properties rather than those of DCP added composites.

A Study on the Mechanical and Thermal Properties of Polyketone/Chopped Carbon Fiber Composites

  • Kim, Seonggil;Jeong, Ho-Bin;Lee, Hyeong-Su;Park, Yu-ri;Lee, Rami;Kye, Hyoungsan;Jhee, Kwang-Hwan;Bang, Daesuk
    • Elastomers and Composites
    • /
    • v.54 no.4
    • /
    • pp.345-350
    • /
    • 2019
  • In this study, aliphatic polyketone (PK)/chopped carbon fiber (CCF) composites with various CCF contents were prepared using a modular intermeshing co-rotating twin screw extruder, and their mechanical and thermal properties such as tensile, flexural, and impact strength and thermal conductivity were investigated. The amount of CCF was increased from 0 to 50 wt%. The tensile and flexural strength of the PK/CCF composites increased as the CCF content increased, but the elongation at break and impact strength was lower than that of pure PK. Thermal properties such as heat distortion temperature and thermal conductivity increased as the CCF content increased. Morphological observations revealed that fiber orientation and interface adhesion between the PK and the CCF in the PK/CCF composites were formed due to the twin screw extrusion, which contributed to improving the mechanical and thermal properties of the composites.

Optimization of Processing Conditions and Mechanical Properties in Polymer Nanocomposite (고분자 나노복합재료의 가공조건 및 물성 최적화)

  • Nam, Byeong-Uk;Hong, Chae-Hwan;Hwang, Tae-Won
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.15 no.6
    • /
    • pp.73-80
    • /
    • 2007
  • Nanocomposites are used as a new class of polymer system and many researchers have been interested in the clay nanocomposite because of its good mechanical properties, heat resistance, flame retardancy, and barrier property. Modified layered silicates as fillers are dispersed at a nanometer-level within a polymer matrix and then new extraordinary properties are observed. In this study, polypropylene/clay nanocomposites were prepared in a twin screw extruder by the melt compounding method. In order to increase the compatibility of PP with the clay, the MAPP was used as a compatibilizer. And organic modified clays were used as a nanometric filler during the melt extrusion. Through the analysis of SAXS, WAXS, the dispersion of clay was investigated. These nanocomposites compared with a neat polypropylene/talc composite have high modulus, low toughness, and reduced shrinkage at the stable dispersion.

The Physical Properties of Wheat Flour Extrudates with Added Phenolic Acids (페놀산 첨가 밀가루 압출성형물의 물리적 특성)

  • Koh, Bong-Kyung
    • Journal of the East Asian Society of Dietary Life
    • /
    • v.17 no.3
    • /
    • pp.379-383
    • /
    • 2007
  • The effects of phenolic acids on the physical properties of wheat flour extrudate were investigated. Ferulic acid, fumaric acid, and p-coumaric acid were mixed with hard wheat flour, respectively, and extruded under a twin screw extruder. We found that by adding the phenolic acids, longitudinal expansion at the die increased, textural hardness decreased, and the water absorption capacity of the extrudate decreased. The results showed that the addition of phenolic acids produced a softer textured, more longitudinally puffed and hydrophobic extrudate compared to the control extrudate. Moreover, the addition of phenolic acids did not significantly affect the color of the extrudate: oxidative browning of the phenolic acids was not observed, due to inactivation of the browning enzymes under the hot temperature and reduced oxygen conditions of the extrusion process.

  • PDF

Preparation and Characterization of Wood Polymer Composite by a Twin Screw Extrusion (이축 압출공정을 이용한 Wood Polymer Composite의 제조 및 특성 분석)

  • Lee, Jong-Hyeok;Lee, Byung-Gab;Park, Ki-Hun;Bang, Dae-Suk;Jhee, Kwang-Hwan;Sin, Min-Cheol
    • Elastomers and Composites
    • /
    • v.46 no.3
    • /
    • pp.211-217
    • /
    • 2011
  • Wood Polymer Composite (WPC) has attracted a great deal of attention in environmental industries due to renewable resources, processability, excellent physical properties and logging regulations for application to housing units and engineering construction materials. In this study, commercial WPCs were prepared by using a modular intermeshing co-rotating twin screw extruder. The effect of three main factors such as wood flour contents, coupling agent concentrations and pre-treatment of wood flour on the properties of WPCs was extensively investigated. It was found that tensile strength and thermal stability were decreased with increasing wood flour contents whereas the water absorption was increased. Addition of maleic anhydride grafted polypropylene (PP-g-MA) into WPC exhibited better physical properties. On the contrary, the water absorption was slightly decreased with PP-g-MA. Finally the sample, which was prepared with pre-treated wood flour, represented the highest tensile strength. However, the water absorption of the sample was increased due to the transition of crystalline structure of cellulose.

The Effects of CO2 Injection and Barrel Temperatures on the Physiochemical and Antioxidant Properties of Extruded Cereals

  • Thin, Thazin;Myat, Lin;Ryu, Gi-Hyung
    • Preventive Nutrition and Food Science
    • /
    • v.21 no.3
    • /
    • pp.271-280
    • /
    • 2016
  • The effects of $CO_2$ injection and barrel temperatures on the physiochemical and antioxidant properties of extruded cereals (sorghum, barley, oats, and millet) were studied. Extrusion was carried out using a twin-screw extruder at different barrel temperatures (80, 110, and $140^{\circ}C$), $CO_2$ injection (0 and 500 mL/min), screw speed of 200 rpm, and moisture content of 25%. Extrusion significantly increased the total flavonoid content (TFC) of extruded oats, and ${\beta}$-glucan and protein digestibility (PD) of extruded barley and oats. In contrast, there were significant reductions in 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging activity, PD of extruded sorghum and millet, as well as resistant starch (RS) of extruded sorghum and barley, and total phenolic content (TPC) of all extrudates, except extruded millet. At a barrel temperature of $140^{\circ}C$, TPC in extruded barley was significantly increased, and there was also an increase in DPPH and PD in extruded millet with or without $CO_2$ injection. In contrast, at a barrel temperature of $140^{\circ}C$, the TPC of extruded sorghum decreased, TFC of extruded oats decreased, and at a barrel temperature of $110^{\circ}C$, PD of extruded sorghum without $CO_2$ decreased. Some physical properties [expansion ratio (ER), specific length, piece density, color, and water absorption index] of the extrudates were significantly affected by the increase in barrel temperature. The $CO_2$ injection significantly affected some physical properties (ER, specific length, piece density, water solubility index, and water absorption index), TPC, DPPH, ${\beta}$-glucan, and PD. In conclusion, extruded barley and millet had higher potential for making value added cereal-based foods than the other cereals.

Formation of Enzyme Resistant Starch by Extrusion Cooking of High Amylose Corn Starch (고아밀로즈 옥수수전분의 압출성형에 의한 난소화성화)

  • Kim, Ji-Yong;Lee, Cherl-Ho
    • Korean Journal of Food Science and Technology
    • /
    • v.30 no.5
    • /
    • pp.1128-1133
    • /
    • 1998
  • Extrusion cooking treatment was compared with autoclaving/cooling treatment for formation of enzyme resistant starch of high amylose corn starch (HACS). Effects of barrel temperature $(100^{\circ}C,\;120^{\circ}C,\;140^{\circ}C)$ and feed moisture content (25%, 35%, 45%) on extrusion processing in a co-rotating twin-screw extruder under fixed screw speed (100 rpm) were investigated by measuring enzyme resistant starch (RS) yield. RS yield were estimated by in-vitro pancreatin digestion method and enzymatic-gravimetric method using termamyl. Barrel temperature and yield of RS were negatively correlated and feed moisture content and yield of RS was positively correlated as determined by in-vitro pancreatin method. The highest yield (38.4%) of RS was obtained from HACS extrudate processed at the barrel temperature of $100^{\circ}C$ and the feed moisture content of 45%, while the yield of RS by 5 times of autoclaving/cooling was 25%. The yield of RS by in vitro pancreatin digestion method was 20.7% with high amylose corn starch and 8.2% with ordinary corn starch (CS), respectively, under the same extrusion condition (barrel temperature $120^{\circ}C$, feed moisture content 35%). At the same condition, the yields of RS by enzyme-gravimetric method were 14.6% with HACS and 6.8% with CS, respectively. The yield of RS increased during the storage at $4^{\circ}C$ for 4 weeks and the highest yield (60%) was obtained by the storage of HACS extrudates extruded at $100^{\circ}C$ and 45% feed moisture content.

  • PDF

Properties of Extracts from Extruded Root and White Ginseng at Different Conditions (압출성형 공정변수에 따른 건조수삼과 백삼 압출성형물의 침출속도 및 침출물 특성)

  • Kim, Bong-Soo;Ryu, Gi-Hyung
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.34 no.2
    • /
    • pp.306-310
    • /
    • 2005
  • The comparison in release rate constant and properties of extracts from extruded raw ginseng and extruded white ginseng was conducted to apply extrusion process for manufacturing of released ginseng tea bag. Dry raw ginseng and white ginseng powder were extruded at 20∼30% moisture content and 200∼300 rpm by using an experimental twin-screw extruder. Browness and redness (both indicated the releasing of saponin and ginsenosides) were increased with the increase in the screw speed and the decrease of moisture content. Crude saponin and water solubility index (WSI) of both ginseng also share the same behaviour against the level of screw speed and moisture content, as well as browness and redness. The particle size effects of extruded raw ginseng at 20% and 28% moisture content on absorbance of released extract at 260 up to 560 nm, WSI, and water absorption index were determined. While particle size decreased from 800∼1000 nm to 200∼500 nm, absorbance and WSI are decreased. Absorbance and WSI shown increasing level while moisture content was decreased. In conclusion, the formation of pores by expansion and disruption of cell wall in extrusion cooking were obviously responsible to increase the amount of released extract of extruded ginseng and its WSI as well. The extrusion process turns out be the efficient process for manufacturing of commercial ginseng tea product than those of other thermal processes.