• Title/Summary/Keyword: Turns ratio

Search Result 225, Processing Time 0.029 seconds

The Study on Pressure Oscillation and Heat Transfer Characteristics of Oscillating Capillary Tube Heat Pipe Using Mixed Working Fluid (혼합 작동 유체를 이용한 진동 세관형 히트 파이프의 압력 진동과 열전달 특성에 관한 연구)

  • Jeong, Hyeon-Seok;Kim, Jeong-Hun;Kim, Ju-Won;Kim, Jong-Su
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.2
    • /
    • pp.318-327
    • /
    • 2002
  • In this paper, heat transfer and pressure oscillation characteristics on oscillating capillary tube heat pipe(OCHP) according to input heat flux, mixture ratio of working fluid and inclination angle were investigated and were compared single working fluid(R-142b) with binary mixture working fluid(R-142b-Ethano1). OCHP was made to serpentine structure of loop type with 10 turns by drilling the channels of length 220mm, width 1.5mm, and depth 1.5mm on the surface of brass plate. In this study, R-l42b and R-l42b-Ethanol were used as working fluids, the charging ratio of working fluids was 40(vol.%), the input heat flux to evaporating section was changed from 0.3W/㎠ to 1.8W/㎠, and mixture ratio of working fluid was R(100%), R(95%)-E(5%), R(90%)-E(10%), and R(85%)-E(15%). From the experimental results, it was found that the effective thermal conductivity of single working fluid was better than that of binary mixture working fluid. But, in case of binary mixture working fluid, critical heat flux was higher than that of single working fluid. And, the higher the mixture ratios of working fluid, the lower heat transfer performance. In case of pressure oscillation, as the inclination angle was lower, pressure wave was more irregular. These phenomena were more serious when the working fluid was binary mixture. Besides, when mixture ratio was higher, saturated pressure was increased, more irregular wave was observed and the mean amplitude was increased. For the same input heat flux, inclination angle and charging ratio, when pressure oscillation has sinusoidal wave, mean amplitude was small, and saturated pressure was low value, the heat transfer was excellent.

Analysis of ELF Magnetic Field Reduction Ratio on Passive Loop Using Scale Down Model of Transmission Line (축소 모델을 이용한 수동 루프 송전선 자기장 저감율 분석)

  • Cho, Yeun-Gyu;Myung, Sung-Ho;Lee, Jae-Bok;Chang, Sug-Hun
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.17 no.12 s.115
    • /
    • pp.1231-1239
    • /
    • 2006
  • In this research magnetic field reduction effect of each passive loop was analyzed by using the scale down models of transmission lines. This paper examined magnetic field reduction effect of the passive loop that will be applied to actual facility through the experiment, which is about double vertical transmission line and horizontal transmission line. Consequently, by confirming the fact that magnetic field reduction effect can be obtained to 50 % by passive loop without reactive compensation, we insured technology about application of passive loop. And the case of 3 turns of loop showed two times reduction effect than that of 1 turns of loop in reducing magnetic field. Vertical passive loop is more efficient than horizontal passive loop in the aspect of reducing magnetic field on double vertical transmission lines. What is more, vertical passive loop showed good effect of reducing magnetic field in a far distance as well as in a short distance.

Selective Harmonic Elimination in Multi-level Inverters with Series-Connected Transformers with Equal Power Ratings

  • Moussa, Mona Fouad;Dessouky, Yasser Gaber
    • Journal of Power Electronics
    • /
    • v.16 no.2
    • /
    • pp.464-472
    • /
    • 2016
  • This study applies the selective harmonic elimination (SHE) technique to design and operate a regulated AC/DC/AC power supply suitable for maritime military applications and underground trains. The input is a single 50/60 Hz AC voltage, and the output is a 400 Hz regulated voltage. The switching angles for a multi-level inverter and transformer turns ratio are determined to operate with special connected transformers with equal power ratings and produce an almost sinusoidal current. As a result of its capability of directly controlling harmonics, the SHE technique is applicable to apparatus with congenital immunity to specific harmonics, such as series-connected transformers, which are specially designed to equally share the total load power. In the present work, a single-phase 50/60 Hz input source is rectified via a semi-controlled bridge rectifier to control DC voltage levels and thereby regulate the output load voltage at a constant level. The DC-rectified voltage then supplies six single-phase quazi-square H-bridge inverters, each of which supplies the primary of a single-phase transformer. The secondaries of the six transformers are connected in series. Through off-line calculation, the switching angles of the six inverters and the turns ratios of the six transformers are designed to ensure equal power distribution for the transformers. The SHE technique is also employed to eliminate the higher-order harmonics of the output voltage. A digital implementation is carried out to determine the switching angles. Theoretical results are demonstrated, and a scaled-down experimental 600 VA prototype is built to verify the validity of the proposed system.

A Study on the Smoke Removal Characteristics of the ESP Adopting Resonant dc-dc Converter

  • Kim, Su-Weon;Park, Jong-Woong;Joung, Jong-Han;Chung, Hyun-Ju;Choi, Jin-Young;Kim, Hee-Je
    • KIEE International Transactions on Electrophysics and Applications
    • /
    • v.4C no.5
    • /
    • pp.193-200
    • /
    • 2004
  • In this study, we propose a small high voltage power supply, which uses a half-bridge ZCS resonant and Cockroft-Walton circuit as its ESP (Electrostatic Precipitator). This power supply transfers energy from the ZCS resonant inverter to the step-up transformer. The transformer secondary is then applied to the Cockroft-Walton circuit for generating high voltage as a discharging source of electrodes. It is highly efficient because its amount of switching losses are reduced by virtue of the current resonant half-bridge inverter, and also due to the small size, low parasitic capacitance in the transformer stage owing to the low number of winding turns of the step up transformer secondary combined with the Cockroft-Walton circuit. Using this power supply, experiments have been carried out as a function of the switching frequency and duty ratio in order to investigate the smoke removal characteristics. From these results, the best operational condition is obtained at the switching frequency of 9 kHz and the duty ratio of 50% in this ESP.

A Study on Variation and Determination of Gaussian function Using SNR Criteria Function for Robust Speech Recognition (잡음에 강한 음성 인식에서 SNR 기준 함수를 사용한 가우시안 함수 변형 및 결정에 관한 연구)

  • 전선도;강철호
    • The Journal of the Acoustical Society of Korea
    • /
    • v.18 no.7
    • /
    • pp.112-117
    • /
    • 1999
  • In case of spectral subtraction for noise robust speech recognition system, this method often makes loss of speech signal. In this study, we propose a method that variation and determination of Gaussian function at semi-continuous HMM(Hidden Markov Model) is made on the basis of SNR criteria function, in which SNR means signal to noise ratio between estimation noise and subtracted signal per frame. For proving effectiveness of this method, we show the estimation error to be related with the magnitude of estimated noise through signal waveform. For this reason, Gaussian function is varied and determined by SNR. When we test recognition rate by computer simulation under the noise environment of driving car over the speed of 80㎞/h, the proposed Gaussian decision method by SNR turns out to get more improved recognition rate compared with the frequency subtracted and non-subtracted cases.

  • PDF

Characteristics of Heat Transfer in the Channel with Twisted Tape

  • Ahn, Soo-Whan;Kang, Ho-Keun
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.15 no.3
    • /
    • pp.122-128
    • /
    • 2007
  • Heat transfer distributions and friction factors in square channels (3.0 ${\times}$ 3.0 cm) with twisted tape inserts and with twisted tape inserts plus interrupted ribs are respectively investigated. The rib height-to-channel hydraulic diameter ratio, $e/D_h$, is kept at 0.067 and test section length-to-hydraulic diameter ratio, $L/D_h$ is 30. The square ribs are arranged to follow the trace of the twisted tape and along the flow direction defined as axial interrupted ribs. The twisted tape is 0.1 mm thick carbon steel sheet with diameter of 2.8 cm, length of 90 cm, and 2.5 turns. Two heating conditions are investigated for test channels with twisted tape inserts and rib turbulators: (1) electric heat uniformly applied to four side walls of the square duct, and (2) electric heat uniformly applied to two opposite ribbed walls of the square channel. Results show that the twisted tape with interrupted ribs provides a higher overall heat transfer performance over the twisted tape with no ribs.

Shaking Table Test of 1/3-Scale 3-Story Sam-Hwan Camus Precast Concrete Model (1/3축소 3층 삼환까뮤 P.C 모델의 진동대 실험)

  • 이한선
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1992.10a
    • /
    • pp.140-154
    • /
    • 1992
  • The objective of the research stated here was aimed at providing the information needed to establish the Korean Seismic Design Code Recommendations and Guides for precast concrete (P.C) large panel apartment buildings. This was accomplished by investigation and analysis of the response of P.C large panel structures subjected to shaking table excitation simulating earthquake ground motion. one of the test specimens used was 1/3-scaled 3-story box P.C model provided by Sam-Hwan Camus Corporation. The 4m $\times$4m shaking table was used to simulate the earthquake ground motion. the employed input accelerogram was the one recorded as Taft N21E component and the peak ground acceleration(PGA) was scaled depending on the desired level of seismic severity and the time according to dynamic similitude rule. Based on results obtained from shaking table test of this P.C model, the following conclusions were drawn . (1) As far as test specimen is concerned, the seismic safety factors turns out to be 7~8. (2)P.C model has damping ratio of about8% which is twice larger than in-situ R.C. structure. And (3)this model has global displacement ductility ratio of 2~3 through the energy dissipation by opening and sliding of joints.

  • PDF

Fabrication of Titanium Microchannels by using Ar+ Laser-assited Wet Etching (레이저 유도에칭을 이용한 티타늄 미세채널 제조)

  • 손승우;이민규;정성호
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.709-713
    • /
    • 2004
  • Characteristics of laser-assisted wet etching of titanium in phosphoric acid were investigated to examine the feasibility of this method for fabrication of high aspect ratio microchannels. Laser power, number of scans, etchant concentration, position of beam waist and scanning speed were taken into consideration as the major process parameters exerting the temperature distribution and the cross sectional profile of etched channels. Experimental results indicated that laser power influences on both etch width and depth while number of scans and scanning speed mainly affect on the etch depth. At a low etchant concentration, the cross sectional profile of an etched channel becomes a U-shape but it gradually turns into a V-shape as the concentration increases. On the other hand, surface of the laser beam focus with respect to the sample surface is found to be a key factor determining the bubble dynamics and thus the process stability. It is demonstrated that metallic microchannels with different cross sectional profiles can be fabricated by properly controlling the process parameters. Microchannels of aspect ratio up to 8 with the width and depth ranges of 8∼32 m and 50∼300 m, respectively, were fabricated.

  • PDF

Comparison of Data Mining Classification Algorithms for Categorical Feature Variables (범주형 자료에 대한 데이터 마이닝 분류기법 성능 비교)

  • Sohn, So-Young;Shin, Hyung-Won
    • IE interfaces
    • /
    • v.12 no.4
    • /
    • pp.551-556
    • /
    • 1999
  • In this paper, we compare the performance of three data mining classification algorithms(neural network, decision tree, logistic regression) in consideration of various characteristics of categorical input and output data. $2^{4-1}$. 3 fractional factorial design is used to simulate the comparison situation where factors used are (1) the categorical ratio of input variables, (2) the complexity of functional relationship between the output and input variables, (3) the size of randomness in the relationship, (4) the categorical ratio of an output variable, and (5) the classification algorithm. Experimental study results indicate the following: decision tree performs better than the others when the relationship between output and input variables is simple while logistic regression is better when the other way is around; and neural network appears a better choice than the others when the randomness in the relationship is relatively large. We also use Taguchi design to improve the practicality of our study results by letting the relationship between the output and input variables as a noise factor. As a result, the classification accuracy of neural network and decision tree turns out to be higher than that of logistic regression, when the categorical proportion of the output variable is even.

  • PDF

Application of Flow Control Devices for Smart Unmanned Aerial Vehicle (SUAV) (스마트무인기에 적용한 유동제어 장치)

  • Chung, Jin-Deog;Hong, Dan-Bi
    • Aerospace Engineering and Technology
    • /
    • v.8 no.1
    • /
    • pp.197-206
    • /
    • 2009
  • To improve the aerodynamic efficiency of Smart Unmanned Aerial Vehicle (SUAV), vortex generators and flow fence are applied on the surface and the tip of wing. The initially applied vortex generator increased maximum lift coefficient and delayed the stall angle while it produced excessive increase in drag coefficient. It turns out reduction of the airplane's the lift/drag ratio. The new vortex generators with L-shape and two different height, 3mm and 5mm, were used to TR-S4 configuration to maintain the desired level of maximum lift coefficient and drag coefficient. Flow fence was also applied at the end of both wing tip to reduce the interaction between nacelle and wing when nacelle tilting angles are large enough and produce flow separation. To examine the effect of flow fence, flow visualization and force and moment measurements were done. The variation of the aerodynamic characteristics of SUAV after applying flow control devices are summarized.

  • PDF