• 제목/요약/키워드: Turning-motion

검색결과 183건 처리시간 0.033초

고속 세그웨이의 곡선 운동에서의 안정성 향상 (Safety Improvement in the Curvature Motion of a High Speed Segway)

  • 김지현;방진욱;이장명
    • 로봇학회논문지
    • /
    • 제15권2호
    • /
    • pp.139-146
    • /
    • 2020
  • In this paper, the slope of the footplate is adjusted to compensate for the centrifugal force with a series elastic actuator (SEA) attached to the Segway's body to improve the cornering characteristics during turning. To ensure Segway's driving safety in the curvature motion, it is necessary to compensate for the centripetal force by tilting the footplate to generate inward force from gravity. When the footplate is tilted under the control of SEA, the vertical load on both wheels has been changed accordingly. The frictional force of the wheel has been changed by the change of the vertical force, which requires adjustment of driving torque to keep the curvature trajectory. That is, the driving torque has been controlled to keep the curvature trajectory considering the frictional force caused by the turning motion. Four SEAs are attached to the footplate to control the slope of the footplate and the real curvature motion has been demonstrated to verify the effects of SEAs in the high- speed curvature motion.

Z시험에 의한 선회권의 작도법에 관한 연구 (A Study on the Method of Turning Circle Drawing by Z-test)

  • 오정철
    • 한국항해학회지
    • /
    • 제7권1호
    • /
    • pp.33-62
    • /
    • 1983
  • A navigator on bridge needs to know every kinds of motion characteristics of his vessel at sea. Generally when a vessel is completely built, the shipyard makes turning circle diagrams from the results of turing circle tests made during the sea trials for the reference of the vessel's owner. But referring only the data of a turning circle diagram, an officer on bridge can not figure out his vessel's maneuvering characteristics sufficiently, So nowadays the shipyard often adds Z test to turning circle test for more detail references. In this paper the author made Z and turning circle tests at the rudder angles of 15 and and 35 degress separately and in each of the case made a turrning circle diagram from the results of the turning circle test and the esults numerically calculated from mathematical formula made on the base of the maneuvering indices got from the Z test and compared them each other for the purpose of finding the correlations between them. Followings are concluded from the results. An actual turning circle diagram and a calculated one from the results of the Z test at same rudder angle coincides each other well when the center of the calculated circle is transferred by 1.7B toward the direction of the initial turning perpendicularly to the original course and 0.5L toward the direction in parallel with original course in case of the rudder angle of 35 degrees and 1.2B and 0.3L toward each of the above mentioned directions in case of rudder angle of 15 degrees.

  • PDF

상지이용유무에 따른 현대무용 아라베스크 턴 동작의 운동역학적 분석 (The Kinetic Analysis of Arabesque Turn Motion in Modern Dance by Upper Extremity Usage)

  • 박양선;김지혜
    • 한국운동역학회지
    • /
    • 제19권3호
    • /
    • pp.457-466
    • /
    • 2009
  • 본 연구는 현대무용 아라베스크 동작 시 팔의 사용 유.무에 따라 아라베스크 동작 바로직후의 턴으로 이어지는 동작에 영향을 미치는 운동역학적 변인을 분석하여 무용 동작에 대한 과학적 근거를 마련하고자 하는 연구의 목적이 있다. 상지를 이용하지 않은 아라베스크 턴 동작이 상지를 이용한 아라베스크 턴 동작 보다 머리의 회전력과 몸통의 회전력을 더 사용 하였고, 오른쪽 어깨를 이용한 회전력을 얻었다. 상지를 이용한 아라베스크 턴 동작은 왼쪽의 고관절 범위와 왼쪽 발끝의 위치변화가 수직축으로 크게 상승되어 있고, 상지를 이용하지 않는 아라베스크 턴 동작은 발끝의 위치가 이벤트별 아래로 떨어졌다. 신체중심 변위에서는 상지를 이용한 아라베스크 턴 동작이 회전하는 축으로 더 크게 이동하였고, 상지를 이용하지 않은 아라베스크 턴 동작의 신체중심이 낮게 위치하였다. 또한 최대 수직지면반력의 결과 상지를 이용한 아라베스크 턴 동작이 상지를 이용하지 않은 동작보다 낮은 값으로 나타나, 상지를 이용하지 않은 아라베스크 턴 동작이 상지를 이용한 동작보다 하지의 체중부하를 더 사용한다는 것으로 나타났다.

상지 이용 유무와 훈련 기간이 무용 회전 동작의 기능에 미치는 영향 (The Effect of Upper Extremity Usage and Length of Training to the Function of Dance Turn)

  • 박양선;임영태
    • 한국운동역학회지
    • /
    • 제17권1호
    • /
    • pp.175-184
    • /
    • 2007
  • The first purpose of this study was to compare kinematic variables during spinning motion with or without upper extremity and identify the most effective spinning method. The second purpose of this study was to compare functional difference between novice and elite dancers with the term of training. Ten experienced female dancers and ten novices were recruited as subjects for this study. Elite group was asked to perform turn motion with three types of upper extremity. Novice group has taken training of spotting technique for five weeks. Four Falcon HiRES cameras were used to analyze kinematic variables including head angular velocity and CG displacement during spinning. These data were sampled before training, after 3-week, and 5-week of training. Eight different events in two consecutive turns were defined for statistical comparison. One-way ANOVA was performed to compare among the kinematics of turning motion with three types of upper extremity. Independent t-test also used to compare kinematics between elite and novice at three different length of training. As results, spinning with both arm increased angular velocity and stability compared to the turning motion with one arm or with arm strapped and found out that the turn with both arm was the most effective way of spin. Also, for novice dancers, three weeks of training were needed to complete spinning motion.

Change in Turning Ability According to the Side Fin Angle of a Ship Based on a Mathematical Model

  • Lee, WangGook;Kim, Sang-Hyun;Jung, DooJin;Kwon, Sooyeon
    • 한국해양공학회지
    • /
    • 제36권2호
    • /
    • pp.91-100
    • /
    • 2022
  • In general, the effect of roll motion is not considered in the study on maneuverability in calm water. However, for high-speed twin-screw ships such as the DTMB 5415, the coupling effects of roll and other motions should be considered. Therefore, in this study, the estimation of maneuverability using a 4-degree-of-freedom (DOF; surge, sway, roll, yaw) maneuvering mathematical group (MMG) model was conducted for the DTMB 5415, to improve the estimation accuracy of its maneuverability. Furthermore, a study on the change in turning performance according to the fin angle was conducted. To accurately calculate the lift and drag forces generated by the fins, it is necessary to consider the three-dimensional shape of the wing, submerged depth, and effect of interference with the hull. First, a maneuvering simulation model was developed based on the 4-DOF MMG mathematical model, and the lift force and moment generated by the side fins were considered as external force terms. By employing the CFD model, the lift and drag forces generated from the side fins during ship operation were calculated, and the results were adopted as the external force terms of the 4-DOF MMG mathematical model. A 35° turning simulation was conducted by altering the ship's speed and the angle of the side fins. Accordingly, it was confirmed that the MMG simulation model constructed with the lift force of the fins calculated through CFD can sufficiently estimate maneuverability. It was confirmed that the heel angle changes according to the fin angle during steady turning, and the turning performance changes accordingly. In addition, it was verified that the turning performance could be improved by increasing the heel angle in the outward turning direction using the side fin, and that the sway speed of the ship during turning can affect the turning performance. Hence, it is considered necessary to study the effect of the sway speed on the turning performance of a ship during turning.

Flow Network을 이용한 청소로봇의 최소방향전환 경로계획 (Minimal Turning Path Planning for Cleaning Robots Employing Flow Networks)

  • 남상현;문승빈
    • 제어로봇시스템학회논문지
    • /
    • 제11권9호
    • /
    • pp.789-794
    • /
    • 2005
  • This paper describes an algorithm for minimal turning complete coverage Path planning for cleaning robots. This algorithm divides the whole cleaning area by cellular decomposition, and then provides the path planning among the cells employing a flow network. It also provides specific path planning inside each cell guaranteeing the minimal turning of the robots. The minimal turning of the robots is directly related to the faster motion and energy saving. The proposed algorithm is compared with previous approaches in simulation and the result shows the validity of the algorithm.

모터의 연성을 고려한 로터리 압축기의 과도진동 해석 (Transient Vibration Analysis of a Rotary Compressor Considering the Coupled Effects of Motor)

  • 정의봉;김정훈;안세진;황선웅
    • 한국소음진동공학회논문집
    • /
    • 제12권11호
    • /
    • pp.847-855
    • /
    • 2002
  • A rotary compressors are used most widely In air-conditioning systems. Noise and vibration of a rotary compressor is an important problems during turning on and off as well as during operating. To estimate the vibration occurring during turning on and off, vibration analysis of a motor-compressor coupled system is required. In this paper, through modeling the motor and solving the forces from the equations of motion of the moving parts, the analysis of vibration of the compressor taking into consideration of the effects of motor and moving parts was performed. The accelerations of accumulator during turning on. turning off and operation are simulated. And simulated accelerations are compared with those of experimental data.

조종성지수에 의한 충돌회피동작의 양적 파악에 관한 연구 (A Study on the Quantative Analysis of a Ship's Collision Avoding Action by Using the Maneuvering Indices)

  • 윤점동
    • 한국항해학회지
    • /
    • 제1권1호
    • /
    • pp.27-44
    • /
    • 1977
  • The Maneuvering Indices of a ship are the values that decide the quantity of her motion in turning when her rudder is turned over to an angle to the starboard or the port. They consist of two kinds of indices, one of which is called index K and the other, index T. Index K decides a ship's turning ability and index T does the length of time delay of a normal turning motion after her rudder has finished the turn of an ordered angle. Generally, the values of the indices are calculated through some mathematic formulas with figures of her heading degrees recorded at a fixed time intervals during her Z test. The values of the same kind index of a ship appear differently according to the ship'sspeed, trim, rudder angle and loaded condition, etc. In this paper, the author analyzed all the amthematic formulas required to calculate the values of the indices in their forming process and examined them from the point of mathematics and dynamics and also actually figured out the values of maneuvering indices of the M.S. "HANBADA", the training ship of Korea Merchant Marine College through her Z test. The author supposed a case in which two same typed ships as the "HANBADA" in size, shape and conditions were approaching each other in meeting end on situation and each ship turned her rudder hard over to the starboard respectively when they approached to the distance of 3 times as long as the ship's length. The author worked out mathematic formulas calculating forward and transverse ship's motions within the above mentioned situation for the quantative analysis of the collision avoding action to certify whether they are in collision status or not. Applying the calculated values of the maneuvering indices of the "HANBADA" to the motion calculating formulas, the author found out the two ships were passing over each other with the clearing distance o 39m between their port quarters. With the above mentioned examinations and explanations, the author demonstrated that a ship's motion in any collision avoiding action can be shown with quantities of time and distance within reliable limit.istance within reliable limit.

  • PDF

CFD를 이용한 KVLCC1의 Circular Motion Test 시뮬레이션 (Circular Motion Test Simulation of KVLCC1 Using CFD)

  • 신현경;정재환
    • 대한조선학회논문집
    • /
    • 제47권3호
    • /
    • pp.377-387
    • /
    • 2010
  • In this study, the turbulent free surface around KVLCC1 employed in the circular motion test simulation is numerically calculated using a commercial CFD(Computational Fluid Dynamics) code, FLUENT. Also, hydrodynamic forces and yaw moments around a ship model are calculated during the steady turning. Numerical simulations of the turbulent flows with free surface around KVLCC1 have been carried out by use of RANS equation based on calculation of hydrodynamic forces and yaw moments exerted upon the ship hull. Wave elevation is simulated by using the VOF method. VOF method is known as one of the most effective numerical techniques handling two-fluid domains of different density simultaneously. Boundary layer thickness and wake field are changed various yaw velocities of ship model during the steady turning. The calculated hydrodynamic forces are compared with those obtained by model tests.

전동기의 연성을 고려한 로터리 압축기의 진동 해석 (Vibration Analysis of Rotary Compressors Considering the Coupled Effect of Motor)

  • 정의봉;황선웅;안세진;김정훈
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2002년도 춘계학술대회논문집
    • /
    • pp.1055-1060
    • /
    • 2002
  • The noise and vibration of rolling piston-type compressors used in the most of the airconditional system is a serious and important problem occurred during turning on and off as well as during operating. To analyze the vibration occurred during turning on and oft, the vibration analysis of motor-compressor coupling is required. In this paper, through modeling of the motor, solving the force from the equations of motion of the moving parts and considering the stiffness of the rubber mounts, the analysis of vibration was performed.

  • PDF