• Title/Summary/Keyword: Turning-Control

Search Result 432, Processing Time 0.027 seconds

Motion Control of Mobile Robot with Arc Sensor for Lattice Type Welding (아크센서를 적용한 격자형 용접용 모빌 로봇의 제어)

  • Jeon, Yang-Bae;Han, Young-Dae;Kim, Sang-Bong
    • Proceedings of the KSME Conference
    • /
    • 2001.06b
    • /
    • pp.319-324
    • /
    • 2001
  • This paper presents the motion control of a mobile robot with arc sensor for lattice type welding. Its dynamic equation and motion control method for welding speed and seam tracking are described. The motion control is realized in the view of keeping constant welding speed and precise target line even though the robot is driven along a straight line or corner. The mobile robot is modeled based on Lagrange equation under nonholonomic constraints and the model is represented in state space form. The motion control of the mobile robot is separated into three driving motions of straight locomotion, turning locomotion and torch slider controls. For the torch slider control, the proportional integral derivative (PID) control method is used. For the straight locomotion, a concept of decoupling method between input and output is adopted and for the turning locomotion, the turning speed is controlled according to the angular velocity value at each point of the comer with range of $90^{\circ}$ constrained to the welding speed. The experiment has been done to verify the effectiveness of the proposed controllers. These results are shown to fit well by the simulation results.

  • PDF

Number of Steps and Time to Accomplish Turning During Timed Up and Go Test in Community-Dwelling Elderlies With and Without Idiopathic Parkinson Disease

  • Choi, Bong-sam;Lim, Woo-taek
    • Physical Therapy Korea
    • /
    • v.23 no.4
    • /
    • pp.47-54
    • /
    • 2016
  • Background: Losing balance during locomotive actions becomes an increasing threat to both the community-dwelling elderly and elderly with Parkinson disease (PD). Those with PD may be at a high risk of fall due to particular characteristics during the turn. Turning around during locomotive actions may be one of problematic factors causing losing balance. Objects: This study is part of a larger study, which in part aims to identify turning strategies, to compare the strategies in the elderly with and without idiopathic PD aged 51 years and older and to distinguish whether the turning strategies can predict the elderly at risk of falls. Methods: A total of 22 community-dwelling elderlies (10 elderlies with idiopathic PD and 12 healthy elderlies) were investigated for the turning strategies during the timed up and go test. Results: There were some significant differences between the two groups during turning (p<.05). The idiopathic PD group had a tendency of challenging on taking more number of steps, more time to accomplish and staggering more for the turn relative to the control group. Conclusion: Taking more number of steps and more time to turn may be useful for distinguishing the characteristics of PD from that of the healthy elderly in turning strategy.

Development of the Dynamic Model and Control Logic for the Rear Wheel Steering in 4WS Vehicle (후륜 조향 동력학 모델 및 제어 로직 개발)

  • 장진희;김상현;한창수
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.4 no.6
    • /
    • pp.39-51
    • /
    • 1996
  • In the turning maneuver of the vehicle, its motion is mainly dependent on the genuine steering characteristics in view of the directional stability for stable turning ability. The under steer vehicle has an ability to maintain its own directonal performance for unknown external disturbances to some extent. From a few years ago, in order to acquire the more enhanced handling performance, some types of four wheel steering vehicle were considered and constructed. And, various rear wheel control logics for external disturbances has not been suggested. For this reason, in this posed rear wheel control logic is based on the yaw rate feed back type and is slightly modified by an yaw rate tuning factor for more stable turning performance. And an external disturbance is defined as a motivation of the additional yaw rate in the center of gravity by an uncertain input. In this study, an external disturbance is applied to the vehicle as a form of the additional yawing moment. Finally, the proposed rear wheel control logic is tested on the multi-body analysis software(ADAMS). J-turn and double lane change test are performed for the validation of the control logic.

  • PDF

Optimal Posture Control for Unmanned Bicycle (무인자전거 최적자세제어)

  • Yang, Ji-Hyuk;Lee, Sang-Yong;Kim, Seuk-Yun;Lee, Young-Sam;Kwon, Oh-Kyu
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.17 no.10
    • /
    • pp.1006-1013
    • /
    • 2011
  • In this paper, we propose an optimal posture control law for an unmanned bicycle by deriving linear bicycle model from fully nonlinear differential equations. We calculate each equilibrium point of a bicycle under any given turning radius and angular speed of rear wheel. There is only one equilibrium point when a bicycle goes straight, while there are a lot of equilibrium points in case of turning. We present an optimal equilibrium point which makes the leaning input minimum when a bicycle is turning. As human riders give rolling torque by moving center of gravity of a body, many previous studies use a movable mass to move center of gravity like humans do. Instead we propose a propeller as a new leaning input which generates rolling torque. The propeller thrust input makes bicycle model simpler and removes input magnitude constraint unlike a movable mass. The proposed controller can hold optimal equilibrium points using both steering input and leaning input. The simulation results on linear control for circular motion are demonstrated to show the validity of the proposed approach.

The Effect of the Turning Rate of the Pod Propeller on the Roll Control System of the Cruise Ship (크루즈선의 횡동요 제어시스템에 미치는 포드 각속도의 영향)

  • Lee, Sung-Kyun;Lee, Jae-Hoon;Rhee, Key-Pyo;Choi, Jin-Woo
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.49 no.1
    • /
    • pp.14-25
    • /
    • 2012
  • Recently, the application and installation of the pod propeller to the cruise ship is dramatically increased. It is because pod propulsion system allows a lot of flexibility in design of the internal arrangement of a ship. To reflect this trend, many researches have conducted to use the pod propeller for the roll stabilization of a ship. In the paper, a roll stabilization controller is designed by using fins and pod propellers as the control actuators for cruise ships. Two kinds of control algorithms are adopted for the roll control system; LQR (Linear Quadratic Regulator) algorithm and frequency-weighted LQR algorithm. Through the numerical simulation, the effect of the turning rate of the pod propeller on the roll control system is analyzed. Analysis of the simulation results indicated that the turning rate of the pod propellers is one of the important parameters which give the significant effects on the roll stabilization.

Motion Control of Two Welding Mobile Robot with Seam Tracking Sensor

  • Byuong-Oh;Jeon, Yang-Bae;Suh, Jin-Ho;Oh, Myung-Suk;Kim, Sang-bong
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.4 no.2
    • /
    • pp.30-38
    • /
    • 2003
  • This paper proposed PID controller for torch slider and PD controller for motor right wheel. to control the motion of two-wheeled welding mobile robot with seam tracking sensor touched on welding line. The motion control is realized in the view of keeping constant welding velocity and precise seam tracking even though the target welding line is on straight line or curved line. The position and direction of the body of the mottle robot are controlled by using signal errors between seam tracking sensor and body positioning sensor attached on the end of torch slider and body side of the mobile robot, respectively. In turning motion, the body and the torch slider are controlled by using the kinematic model related with two motions of body turning and torch sliding. The straight locomotion is controlled according to eleven control patterns obtained from displacements between two sensors of the seam tracking sensor and the body positioning sensor. The effectiveness is proven through the experimental results fur lattice type welding line. Through the experimental results, we can see that the position value of the electrode end point and the welding velocity are controlled almost constantly both in straight and turning locomotion.

The Effect of Turning Training on Figure of 8 Tract on Stoke Patients' Balance and Walking (8자 모양 트랙을 이용한 방향전환 훈련이 뇌졸중 환자의 균형 및 보행에 미치는 영향)

  • Kim, Mi-Gan;Kim, Joong-Hwi;Park, Ji-Won
    • The Journal of Korean Physical Therapy
    • /
    • v.24 no.2
    • /
    • pp.143-150
    • /
    • 2012
  • Purpose: This study was intended to discover the effect of the turning training on figure of 8 tract on stroke patients' static and dynamic balance, as well as walking. Methods: A total of 42 stroke patients participated in this study. The training group was trained on the figure of 8 tract, while the control group was trained on the straight path for 30 minutes per day, for 4 weeks. Berg balance scale was used to measure the balance of the patients, before and after the training, and Good balance system was used to measure the sway speed and the distance of COG while standing. To measure the ability of walking, TUG and FSST were also used. Results: There were significant increases in the average score of Berg balance scale, in both groups after the training, and also significant difference between both groups were observed. The training group showed significant differences in the static balance ability, as well as anteroposterior and mediolateral sway speed. Further, there were significant increases in the dynamic balance ability, COP total distance, and TUG in both groups. The results showed more differences in comparing the control group with that of the training group. In FSST, there was no change in the control group, but there was a significant increase in the training group. Conclusion: Turning training on figure of 8 tract in stroke patients significantly increased the static and dynamic balance and walking ability. Based on the results, it can be seen that the training on the figure of 8 tract can influence the ability of balance and walking, which can lead to appropriate reactions to the change of environment and various tasks. Thus, it is assumed that turning training on figure of 8 tract as a means of improving the condition of stroke patients can be a meaningful program.

User-friendly adjustable table fan with selective rotation angles (사용 편의성 향상을 위한 선풍기의 효율적 회전구간 선정)

  • Kim, Sang-Hyun
    • The Journal of the Convergence on Culture Technology
    • /
    • v.8 no.2
    • /
    • pp.53-58
    • /
    • 2022
  • Since a general household fan has only one left/right turning stage, the rotation angle cannot be adjusted leading to cases whether the wind reaches to an unnecessary area or vice versa. In this paper, we propose a method to efficiently control the turning section to selectively send wind to a necessary space while reducing energy waste. The minimum rotation angle was obtained by experimentally measured the stationary wind direction angle of the fan, and the optimal number of turning stages was selected by appropriately dividing the space where the wind reaches. Through this, it was confirmed that if the fan has a minimum rotation angle of 45°, a turning section of 3 stages and its rotation angle is increased by twice the stationary wind direction angle at each stage, the wind is distributed efficiently. Therefore, it is considered that the selective turning stage control proposed in this paper can minimize energy waste without significant change of the fan structure.

Identification of the Chip Form Using Back Propagation Algorithm (백프로파게이션 알고리즘을 이용한 칩 형태의 인식)

  • 심재형;권혁준;백인환
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.11a
    • /
    • pp.206-211
    • /
    • 1996
  • A major problem in automation of turning operation is the difficulty in obtaining a sufficient and reliable chip control. Therefore it becomes desirable to find a method which can detect the chip form. In this paper, a method of the identification of chip form using output of pyrometer and neural network technique is developed. An efficiency of developed method is examined by experiments in turning and the validity of it is confirmed.

  • PDF