• Title/Summary/Keyword: Turning times

Search Result 183, Processing Time 0.028 seconds

The Effect of the Speed of a Ship on Her Turning Circle (선속이 선회권에 미치는 영향에 관한 연구)

  • 김기윤
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.35 no.3
    • /
    • pp.209-214
    • /
    • 1999
  • The turning circle of a ship is the path followed by her center of gravity in making a turn of 360$^{\circ}$degrees or more with helm at constant angle. But generally it means her path traced at full angle of the rudder. For the ordinary ship the bow will be inside and the stern outside this circle.It has been usually understood that the turning circle is not essentinally affected by ship's speed at Froude numbers less than about 0.30. However, it is recently reported that the speed provide considerable effects upon the turning circle in piloting many ships actually at sea. In this paper, the author analyzed what effects the speed could provide on the turning circle theoretically from the viewpoint of ship motions and examined how the alteration of the speed at Froude no. under 0.30 affect the turning circle actually, through experiments of actual ships of a small and large size.The main results were as follows.1. Even though ship's speed at Froude no. under 0.30, the alteration of the speed affects the turning circle considerably.2. When the full ahead speeds at Froude no. under 0.30 of small and large ships were increased about 3 times slow ahead speeds, the mean rates of increase of the advances, tactical diameters and final diameters of thease ships were about 16%, 21% and 19% respectively.3. When the full ahead speeds at Froued no. under 0.30 of small and large ships were increased about 3 times slow ahead speed, the mean rate of increase of the turning circle elements of large ships was greater 10% than that of small ships. 4. When the full ahead speeds at Froued no. under 0.30 of small and large ships were increased about 3times slow ahead speeds, the mean rates of increase of the tactical diameter and final diameter of thease ships were greater than that of the advances of thease ships. 5. When only alteration of speed or sip's head turning is the effective action to avoid navigational fixed hagards, reducing the speed is always more advantageous than increasing the speed in order to shorten fore or transverse distance.

  • PDF

The Effect of the Speed of a Ship on Her Turning Circle (선속이 선회권에 미치는 영향에 관한 연구)

  • 김기윤
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.35 no.3
    • /
    • pp.210-210
    • /
    • 1999
  • The turning circle of a ship is the path followed by her center of gravity in making a turn of 360$^{\circ}$degrees or more with helm at constant angle. But generally it means her path traced at full angle of the rudder. For the ordinary ship the bow will be inside and the stern outside this circle.It has been usually understood that the turning circle is not essentinally affected by ship's speed at Froude numbers less than about 0.30. However, it is recently reported that the speed provide considerable effects upon the turning circle in piloting many ships actually at sea. In this paper, the author analyzed what effects the speed could provide on the turning circle theoretically from the viewpoint of ship motions and examined how the alteration of the speed at Froude no. under 0.30 affect the turning circle actually, through experiments of actual ships of a small and large size.The main results were as follows.1. Even though ship's speed at Froude no. under 0.30, the alteration of the speed affects the turning circle considerably.2. When the full ahead speeds at Froude no. under 0.30 of small and large ships were increased about 3 times slow ahead speeds, the mean rates of increase of the advances, tactical diameters and final diameters of thease ships were about 16%, 21% and 19% respectively.3. When the full ahead speeds at Froued no. under 0.30 of small and large ships were increased about 3 times slow ahead speed, the mean rate of increase of the turning circle elements of large ships was greater 10% than that of small ships. 4. When the full ahead speeds at Froued no. under 0.30 of small and large ships were increased about 3times slow ahead speeds, the mean rates of increase of the tactical diameter and final diameter of thease ships were greater than that of the advances of thease ships. 5. When only alteration of speed or sip's head turning is the effective action to avoid navigational fixed hagards, reducing the speed is always more advantageous than increasing the speed in order to shorten fore or transverse distance.

Measurement for the Tuning Circle of the Stern Trawler HAELIM-3 by the Differential GPS (DGPS에 의한 선미트롤선 해림 3호의 선회권측정)

  • Choi, Jae-Eun;Kim, Jin-Kun;Kim, Ki-Yun
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.31 no.1
    • /
    • pp.84-92
    • /
    • 1995
  • The methods by turning circle test and maneuvering indices have been used to study and evaluate the maneuverability of a ship. However recently many studies utilizing the GPS are made on the measurement of the turning circle and in the fishery and hydrographic survey. In this paper, the author carried out the turning circle test using the differential GPS and dumb card together, and compared the data measured by them and analyzed the accuracies of them to obtain the utility basic ones on the measurement of the turning circle by the DGPS. The main results area s follows : 1) To check the accuracies of the GPS, the circling experiments of 50m radius by the DGPS were made on the ground. The accuracies of turning circle measured by the DGPS were found to be very high as the errors of 1.5m. 2) the turning circle by the DGPS could be measured very accurately, by the seed, rudder angle, starboard and port respectively. 3) The turning circle measured by the dumb card was found to be measured accurately as much as the DGPS, when using large rudder angle, the turning circle was large, the turning circle by the dumb car could not be measured accurately on account of large error of bearing of compass. 4) The tactical diameters by the DGPS in case of the rudder angle 35。~5。, were found to be 2.6。15.0 times the Lpp of S.T HAELIM-3 at her slow speed 2.8~16.6 times her Lpp at her half speed, 3.1~17.4 times her Lpp at her full speed. The tactical diameter by the dumb card was found to be 2.4~9.5 times, 2.6~9.6 times, 3.2~12.2 times her Lpp respectively, in the above case and speed.

  • PDF

INSTABILITY OF OBLIQUE SHOCK WAVES WITH HEAT ADDITION (후방 발열이 있는 경사 충격파의 불안정성)

  • Choi, J.Y.;Shin, J.R.;Cho, D.R.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2007.10a
    • /
    • pp.232-235
    • /
    • 2007
  • A comprehensive numerical study was carried out to identify the on-set condition of the cell structures of oblique detonation waves (ODWs). Mach 7 incoming flow was considered with all other flow variables were fixed except the flow turning angles varying from 35 to 38. For a given flow conditions theoretical maximum turning angle is $38.2^{\circ}$ where the oblique detonation wave may be stabilized. The effects of grid resolution were tested using grids from $255{\times}100$ to $4,005{\times}1,600$. The numerical smoked foil records exhibits the detonation cell structures with dual triple points running opposite directions for the 36 to 38 turning angles. As the turning angle get closer to the maximum angle the cell structures gets finer and the oscillatory behavior of the primary triple point was observed. The thermal occlusion behind the oblique detonation wave was observed for the $38^{\circ}$ turning angle.

  • PDF

A Study on the Turning System for Processing a Large Ship Propeller (대형 선박 프로펠러 가공 공정용 터닝 시스템에 관한 연구)

  • Do-Hun Chin
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.26 no.5
    • /
    • pp.825-831
    • /
    • 2023
  • The propellers used for big ships have a large diameter and are very heavy. In order to apply a precise and safe work process to them, it is necessary to use an exclusive turning system. For this reason, various techniques are applied to produce them. However, workers' convenience and safety are not taken into consideration enough at production sites. Conventionally, these propellers are designed to be separated as their turning system is loaded and rotated by empty weight. Therefore, it is necessary to replace such a design. This study tries to find the weaknesses of the design and structure of a conventional propeller turning system for large ships, to verify structure integrity of a structure in structural analysis, and to devise a plan for designing a new type of turning system. In the basic concept design and structural analysis for the turning system used in the propeller finishing process for large ships, this study drew the following conclusions. It was possible to develop the work process of the turning system for the propeller finishing process used for large ships, to obtain the dimensions for exterior design through a basic design. Structural analysis was conducted to find the structure integrity of the turning system. As a result, in the rail installed to transfer a gantry, the maximum stress was about 45MPa, about 5.5 times lower than the yield strength 250MPa. Therefore, the turning system was judged to be safe structurally.

The property of WC(Co 0.5%) ultra precision turning for optical pick-up objective lens molding press for optical infomation storing(I) (광정보저장용 광픽업 대물렌즈 성형용 초경합금 (Co 0.5%) 초정밀절삭 특성(I))

  • Kim, Min-Jae;Lee, Jun-Key;Hwang, Yeon;Kim, Hye-Jeong;Kim, Jeong-Ho
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.178-178
    • /
    • 2009
  • High-density optical information storing equipment, which is using Blu-ray, is the next generation information storing equipment that has about form six times to thirty-five times capacities. and high-density optical information storing equipment uses high NA(Numerical Aperture) aspheric glass objective lens as optical pick-up equipment to record and recognize high-density date. Generally this objective lens is developed and produced through a way of GMP(Glass Molding Press) that uses molding core that is performde by Ultra precision grinding, but grinding performing that has high-accuracy is very difficult because objective lens form is high NA. In this research, we preformed Ultra precision turning, using single crystal diamond bite, about WC(Co 0.5%), sintering brittleness material that is used molding core's material for GMP. and we confirmed aspheric glass lens compression of deformities molding core's Ultra precision turning possibility by measuring surface roughness(Ra) and processing surface's condition.

  • PDF

A Study of Real Ship Experiments to Estimate the Heeling Angle of Passenger Type Ship when Turning (여객선형의 선회 중 횡경사 추정에 관한 실선 실험 연구)

  • Kim, Hongbeom;Lee, Yunhyung;Park, Youngsun;Kong, Gilyoung
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.24 no.5
    • /
    • pp.497-503
    • /
    • 2018
  • Passenger ships and training ships have a common feature in that they serve many passengers. Thus, safe navigation is very important. During normal sailing, a ship may turn using various types of steering, including maneuvers to avoid collisions with dangerous target. When a ship turns, a heeling angle occurs. If trouble arises during sailing, a dangerous heeling angle may result or a capsizing accident. In this study, the heeling angle during turning was measured through experimentation with two training ships similar to passenger ships. These findings were compared with theoretical formulas for heeling angle when turning. We confirmed that the limit of the maximum heeling angle estimation using heeling angle formula when turning presented in IMO stability criteria. In addition, it was confirmed that the maximum estimated heeling angle can be reached by applying the result calculated in the theoretical formula 1.4 times when turning right and 1.1 times when turning left to reflect sailing speed when of rudder hard over. It is expected that this study will provide basis data for establishing safe operation standards for the prevention of dangerous heeling angles when turning.

Effect of Heat/Mass Transfer in the turbine blade internal passage with various rib arrangement (회전하는 터빈 블레이드 이차유로내 요철 배열이 열/물질전달에 미치는 영향)

  • Lee, Sei-Young;Cho, Hyung-Hee
    • Proceedings of the KSME Conference
    • /
    • 2001.11b
    • /
    • pp.22-29
    • /
    • 2001
  • The present study investigates the effects of various rib arrangements and rotating on heat/mass transfer in the cooling passage of gas turbine blades. The cooling passage has very complex flow structure, because of the rib turbulator and rotating effect. Experiments and numerical calculation are conducted to investigate the complex flow structures and heat transfer characteristics; the numerical computation is performed using a commercial code, FLUENT ver.5, to calculate the flow structures and the experiments are conducted to measure heat/mass transfer coefficients using a naphthalene sublimation technique. For the rotating duct tests, the test duct, which is the cross section of is $20mm\times40mm$ (the hydraulic diameter, $D_h$, of 26.7 mm, has two-pass with $180^{\circ}$ turning and the rectangular ribs on the wall. The rib angle of attack is $70^{\circ}$ and the maximum radius of rotation is $21.63D_h$. The partition wall has 10 mm thickness, which is 0.5 times to the channel width, and the distance between the tip of the partition wall and the outer wall of the turning region is 26.7 mm $(1D_h)$. The turning effect of duct flow makes the very complex flow structure including Dean type vortex and high turbulence, so that the heat/mass transfer increases in the turning region and at the entrance of the second pass. The Coriolis effect deflects the flow to the trailing surface, resulting in enhancement of the heat/mass transfer on the trailing surface and reduction on the leading surface in the first pass. However, the opposite phenomena are observed in the second pass. The each rib arrangement makes different secondary flow patterns. The complex heat/mass transfer characteristics are observed by the combined effects of the rib arrangements, duct rotation and flow turning.

  • PDF

The Effects of Standing Posture Improvement Exercise to the Turning Round Movement in Patients with Parkinson Disease (기립자세 증진 운동이 파킨슨병 환자의 제자리 돌기 동작에 미치는 영향)

  • Kim, Joo-Hyoun;Hwang, Byong-Yong;Yoon, Hui-Jong
    • The Journal of Korean Physical Therapy
    • /
    • v.19 no.5
    • /
    • pp.21-28
    • /
    • 2007
  • Purpose: The aims of this study was to evaluate the effects of shoulder lateral rotation and trunk extension exercises on standing posture improvement exercises using turning round in the patients with Parkinson's disease. Methods: For twenty-one patients with Parkinson's disease, shoulder lateral rotation and trunk extension exercises were performed for a total of three sets, ten times a set, three days a week for twelve weeks. To measure turning round, ink foot-print method was used. The number of steps and time were measured every week for before and after study (twelve weeks). Results: The results are as follows: Changes in steps and time on each week during twelve weeks showed significant differences, compared with before test(p<0.05). Conclusion: Standing posture improvement exercises can help perform turning round in the patients with Parkinson's disease.

  • PDF

A Study on the Maneuverabilities of the M . S . Pusan 404-Tests by a Series of Turning Circles , New Course Keeping and Spiral (부산 404호의 조종성능에 관한 연구)

  • 김민석
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.28 no.1
    • /
    • pp.21-26
    • /
    • 1992
  • Generally a navigator evaluated the maneuverability of his ship by the scale of turning circle which was described only by the largest rudder angle of the port and starboard sides. But to have the sufficient knowledge of his ship's maneuvering characteristics he should consider the data about the new course keeping test, the spiral test, and the turning circle tests in accordance with the rudder angles together. In this paper the author performed the above tests to study the maneuverability of the stern trawler M.S. Pusan 404 which is a training ship of the National Fisheries University of Pusan. The obtained results are summarized as follows: 1. When the rudder angles being 5。, 10。, 20。, 30。, 35。 the advances of the starboard side turning circles were 12.8, 8.2, 4.8, 2.9, 2.7 times as large as the length of the ship, and of the port side turning circles were 13.3, 8.7, 5.4, 3.5, 2.9, time as large as the large as it. Under the same conditions the tactical diameters were 15.1, 9.7, 5.2, 3.1, 2.8 times as large as the length of the ship, for starboard side, and 17.2, 12.4, 6.4, 3.7, 3.2 times as large as it for port side. 2. As the rudder angle being increased the ratio of the advance to the tactical diameter was nearly 1 and her obeying ability was better than that of the small angle. 3. The mean values of the rates of speed reduction during the steady turning motion were 0.96, 0.92, 0.82, 0.71, 0.65 in accordance with the rudder angles. 4. The relative formulas between the distance to the new course y and the altering course x were as follows: When rudder angles being 10。, 20。, 30。, y=52.2222+1.6133x, y=48.750+0.9383x, y=39.250+0.655x respectively. 5. There was little difference of the distance to the new course between rudder angle 20。and 30。, and so it is desirable for a navigator to a navigator to use the small rudder angles unless sudden emergencies. 6. Though her rudder angle being small her course stability was good according to the spiral tests.

  • PDF