• Title/Summary/Keyword: Turning radius

Search Result 138, Processing Time 0.028 seconds

Development & Test of A Small-Sized Autonomous Underwater Vehicle "BOTO" (소형 자율무인잠수정 "BOTO"의 개발 및 실험)

  • Byun, Seung-Woo
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.49 no.11
    • /
    • pp.103-109
    • /
    • 2012
  • Samsung Thales has developed a small-sized autonomous underwater vehicle "BOTO" verified by a mathematical model simulation. The hydrodynamic coefficients and drag force were experimented at circulating water channel for validating cruising performance of the AUV. Based on the mathematical model, we simulated turning radius and way-point tracking on horizontal plane using way-point tracking algorithm. In this paper we introduce the vehicle system and the sea trial test results will be shown.

A Study on the Flank Wear of Carbide Tool in Machining SUS304 (SUS304 절삭시 Carbide 공구의 Crater 마모에 관한 연구)

  • Jeong, Jin-Yong;O, Seok-Hyeong;Kim, Jong-Taek;Seo, Nam-Seop
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.8 no.3
    • /
    • pp.44-54
    • /
    • 1991
  • A Study was made on falnk wear in carbide tools in turning SUS304 steel. When an austenitic stainless steel (SUS304 steel) is cut with the tool, saw-toothed chip are produced. It is found that machining SUS304 steel would make a tool worn fast. For increasing productivity, tool wear has to be predicted and controlled. An amended cutting geometry consisting of a negative rake angle ($-6^{\circ}$ ) and a high clearance angle ($-17^{\circ}$ ) is proposed for decreasing carbide tool wear (flank) in the machining of SUS304 steel. The amended cutting geometry is found to make the flank wear lower than a general cutting geometry (rake angle $6^{\circ}$ , clearance angle $5^{\circ}$). The effects of the three cutting variables (cutting speed, feed, tool radius) on the flank wear analyzed by fiting a simple first-order model containing interaction terms to each flank wear parameter by means of regression analysis and the predicted from first-order regression analysis model equation of flank wear.

  • PDF

A Study on the Wide Reach Nozzle of Sprayer (III) (휴반용 분무기의 Nozzle에 관한 연구(III))

  • 원장우
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.15 no.4
    • /
    • pp.3147-3152
    • /
    • 1973
  • The factors to influence the travelling distance of sprayed particles for the medium range nozzle may by the groove depth of swirl plate, the cap slope, the diameter of cap hole, and pressure. 1. This study was conducted to examine Interaction effects among four factors to the travelling distance. The results of this study are summarized as followa; a) Interaction effects among four factors the groove depth(G), cap slope(C), diameter of cap hole(D), and pressure (P), were significant to influence the travelling distance except for $G{\times}P,\;C{\times}D{\times}P\;and\;G{\times}C{\times}D{\times}P$. b) Interaction effects with the pressure were very smaller than interaction effects among the other factors. c) Effect of change of the groove depth of swirl plate on the travelling distance of sprayed particles was generally a linear, the increasing rate of the change was about 0.345, which was very significant. d) Effect of change of cap slope on the travelling distance was generally a linear or a dull quadratic, the increasing rate was very small. e) Main effect of change of cap slope in the medium range nozzle was very smaller than that of the close range nozzle on the travelling distance, which was estimated by the changing of turning radius of flowing course in nozzle. f) Interaction effect between two factors in the medium range nozzle was more significant than that of the close range nozzle on the travelling distance.

  • PDF

A Study on Parking Guideline Generation Algorithm (주차 가이드라인 생성 알고리즘에 대한 연구)

  • Heo, Jun-Ho;Lee, Seon-Bong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.5
    • /
    • pp.3060-3070
    • /
    • 2015
  • Recently, novice driver or weak drivers was difficult to understand the movement characteristics of the car and are immature sense of width and length of the car according to various each driver's sex and age, model. To complement this problem, the use of rear sensor and the camera is increased. And the parking assistance system that improves the convenience of parking the driver is being developed. Accordingly, parking guide system is needed to reflect the difference in the steering angle and correct the error distance. In this study, it is proposed that the turning radius during backward by complementing the existing Ackerman Jentaud type. And it develops more accurate parking guideline to be able to generat algorithm by applying the formula to propose a steering wheel angle sensor value derived through the handle.

A Study to Develop a Multiple Container Transportation System (대용량 컨테이너 이송장치 기술개발 전략 연구)

  • Oh, Suk-Mun;Lee, Inmook
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.2
    • /
    • pp.638-645
    • /
    • 2014
  • This paper presents results of a study for development and application of container massive transportation system. The system is aimed to improve competing power of Korean container ports. This paper selects Double stack Multi-Trailer System (DMTS) under consideration of pros-con analysis between three systems alternatives as well as operation process of existing Korean container terminal companies. An analysis of turning radius is undertaken for applying the system. Key elementary technologies was derived by patent analysis. DMTS has no problems in utilization to existing Korean container ports. Further, the system is expected to highly potential to improve operational efficiency in the container ports thanks to its high unit transportation capacity.

Development of the All-Wheel-Steering Algorithm using Dynamic Analysis of the Bi-modal Vehicle (저상굴절차량의 주행해석을 이용한 전차륜 조향 알고리즘 개발)

  • Jeon, Yong-Ho;Park, Tae-Won;Lee, Soo-Ho;Kim, Duk-Gie;Moon, Kyung-Ho
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.16 no.1
    • /
    • pp.144-151
    • /
    • 2008
  • The bi-modal vehicle is composed of two car-bodies and three axles. Each axle of the vehicle has an independent suspension and all wheels are steerable. Since the bi-modal vehicle has longer wheelbase than most urban buses, the All-Wheel-Steering(AWS) system is adapted for to ensure safe driving and proper turning radius on a curved road. This paper proposes an AWS control algorithm for stable driving of bi-modal vehicle. Steering angles and directions of each axle of bi-modal vehicle changed according to the driving environment and steering modes. In the case that front and rear axles should be steered in opposite directions is a negative mode, and the other case that the axles should be steered in the same direction is a positive mode. For example, in the positive mode, front and real axles are steered in the same direction, while in the negative mode, they are steered in the opposite direction. A multibody model of the vehicle is used to verify the performance of the steering algorithm and simulation results of 2WS are compared with those of AWS under the same condition.

A Study on Wheel Design for a Self-Propelled Boom Sprayer considering the Rice Plant Damage and Wheel Track-Plant Damage Simulation of Various Steering Vehicles (수도작용 자주식 붐방제기의 작물손상을 고려한 차륜설계 및 조향형식별 차륜궤적 -작물손상의 시뮬레이션)

  • 정창주;김형조;조성인;최영수;최중섭
    • Journal of Biosystems Engineering
    • /
    • v.21 no.1
    • /
    • pp.34-43
    • /
    • 1996
  • The present pesticide application technology widely used with a power sprayer in Korea is assessed as the problem awaiting solution in the point of view of its ineffectiveness, inefficiency, and environmental contamination. As one approach to get rid of these problems, the boom spraying with ultra-low volume and precision application technology has been recommended. The study was undertaken to investigate plants damages incurred by the self-propelled boom-sprayer vehicle, to develop the design criteria of vehicle wheel, and to compare plant damages caused by the front wheel steering vehicle, the 4-wheel drive vehicle and the articulated vehicle, by the computer simulation. The experiment showed that the amount of damaged plants incurred by the self-propelled boom sprayer were about 0.29% in average in the field size of 100m$\times$50m(0.5ha), about 60~80% of which recovering while growing. The recommandable wheel size was analyzed to be 70~100cm in diameter, 8~15cm in width from the vehicle-plant-soil relationship. The simulation on damaged plants anticipated to be incurred by various steering vehicles showed that the smaller the turning radius, the lesser the damaged plants within its range of 3~5m. Average plant damage rate by the front wheel steering vehicle, the 4-wheel drive vehicle and articulated vehicle was relatively assessed to be 2 : 1.8 : 1.

  • PDF

Development of Self-propelled Explosive Subsoiler (2) - Construction of Prototype and Performance Evaluation - (자주식 심토환경 개선기 개발(2) - 본체 제작 및 성능 평가 -)

  • Lee, Dong-Hoon;Park, Woo-Pung;Kim, Sang-Cheol;Lee, Kyou-Seung
    • Journal of Biosystems Engineering
    • /
    • v.34 no.6
    • /
    • pp.404-410
    • /
    • 2009
  • This study was carried out to develop a self-propelled type explosive subsoiler for improving the root zone soil conditions in orchard and other forest fields. Prototype was designed to be able to inject air and other soil improving material such as lime into soil at the same time, and thus improve the air permeability and drainage of orchard soils to promote the root growth of tree for high quality fruit production. Soil penetration device of explosive subsoiler is composed of air hammer, penetration rob and air injection nozzle. To support the soil penetration device of explosive subsoiler to penetrate vertically, modified Scott-Russel mechanism was used. Timing control device for simultaneous injection of soil improving material with air was attached to the out side wall of air cylinder and as the cylinder move, the soil improving material was injected into soil at the same time. Turning radius of prototype was 2.2-2.3 m with good mobility in sloped land. It took approximately 1 minute for lime injection system to reach the optimum pressure of 9.9 kg/$cm^2$, average 10-20 seconds were required to rupture soil with the depth of 50 cm and 2-3 seconds were required for explosion, so all in all about 1 minute and 20 seconds were required for one cycle of explosion. Maximum soil rupture depth and diameter were 50 cm and 3-4 m respectively depending on the soil type and soil moisture content. For final design of explosive subsoiler inclination angle of lime hopper was increased from 60 degree to 70 degree and the shape of hopper was changed from rectangular cone to circular cone to solve the clogging problem of lime at out let. Agitating system operated by compressed air was attached to the metering device of the prototype, thus more than 90 cc of lime was discharged per cycle from metering device without clogging problems.

Development of Self-propelled Explosive Subsoiler (1) - Present Status of Soil Compaction and Subsoil Management in Orchard - (자주식 심토환경 개선기 개발(1) - 과수원의 토양 다짐 특성 및 심토 관리 실태 -)

  • Lee, Dong-Hoon;Park, Woo-Pung;Lee, Kyou-Seung
    • Journal of Biosystems Engineering
    • /
    • v.34 no.6
    • /
    • pp.397-403
    • /
    • 2009
  • This study was carried out to investigate the present status of subsoil compaction, and subsoil compaction management in orchard as a basic study for developing a self-propelled explosive subsoiler. Subsoil compaction was evaluated using the soil penetration resistance. Soil cone index was measured using the DIK 5520 type cone penetrometer in several fruit farms such as apple, pear, peach and grapes during growing seasons of these fruit in Jecheon, Gamgok, Choongju, Cheonan and Hwasung areas. Most of the subsoil managing machinery were either explosive type or digging type attached to the tractor or power tiller and turning radius of this machine was more than 3-5 m. Many of the farmers wanted to use the subsoiler which can put lime into soil and rupture soil at the same time. For most of the orchard fields, soil penetration resistance in vehicle traffic area was increased quickly and reached about 1.0 MPa in 5 cm soil depth. As the soil depth increased to 15-20 cm, cone penetration resistance reached about 2.0-2.5 MPa which restricted root growth seriously. Thus it was concluded that one of the main reason for increasing the soil compaction in orchard fields is agricultural vehicle traffic. In the vicinity of fruit trees, compaction is not so serious compared to that of the vehicle traffic area, but as the soil depth increased to 20-25 cm, in most of the orchard fields soil penetration resistance reached about 2.0-2.5 MPa which is the root growth-limiting value. Considering the rooting depth of fruit trees which ranged 30-60 cm for apple, pear and peach, and 20-30 cm for grape, it is necessary to loosen the subosoil and improve the subsoil conditions using subsoiler.

The Analysis of Kinematic Difference in Glide and Delivery Phase for the High School Male Shot Putter's Records classified by Year (남자 고등부 포환던지기 선수들의 연도 별 기록에 따른 글라이드와 딜리버리 국면의 운동학적 차이)

  • Park, Jae-Myoung;Chang, Jae-Kwan;Kim, Tae-Sam
    • Korean Journal of Applied Biomechanics
    • /
    • v.23 no.4
    • /
    • pp.295-306
    • /
    • 2013
  • The purpose of this study was to provide high school male shot putters training methods of gliding and delivery motion through comparative analysis of kinematic characteristics. To accomplish this purpose, three dimensional motion analysis was performed for the subjects(PKC, KKH, YDL) who participated in high school male shot putter competition on 92nd (2011), 93rd (2013) National Sports Festival. The subjects were filmed by four Sony HXR-MC2000 video cameras with 60 fields/s. The three-dimensional kinematic data of the glide, conversion and delivery phase were obtained by Kwon3d 3.1 version. The data of the shoulder rotational angles and projection angles were calculated with Matlab R2009a. The following conclusions had been made. With the analysis of the gliding and stance length ratio, the gliding length was shorter at the TG than the SG with short-long technique but the gliding and stance length ratio was 46.8:53.2% respectively. The deviation of the shots trajectory from APSS(Athlete-plus-shot-system) revealed that the PKC showed similar to "n-a-b-c-I" of skilled S-shape type, KKH and YDL showed "n-a-d-f-I'" of unskilled type. Furthermore, they showed smaller radial distance from the central axis of the APSS and the shots were away from the linear trajectory. From this characteristics, The PKC who performed more TG than SG had shorter glide with S-shape of APSS(skilled type) showed the better record than others with technical skill. But KKH and YDL had bigger glide ratio with "n-a-d-f-I'" of unskilled type and improved their records with technical factor. The projection factor had an effect on the record directly. Because PKC maintained more lower glide and transition posture with momentum transfer through COG's rapid horizontal velocity respectively the subject possessed the characteristics of high horizontal and vertical velocity with large turning radius from shot putter to APSS.