• Title/Summary/Keyword: Turning machining

Search Result 333, Processing Time 0.026 seconds

Ultra-precision Machining of Space Telescope IR Camera Lens (초정밀 가공기를 이용한 적외선 우주망원경용 렌즈의 절삭가공기술개발)

  • Yang, Sun-Choel;Kim, Geon-Hee;Kim, Hyo-Sik;Shin, Hyun-Su;Hong, Kweon-Hee;Yoo, Jong-Sin;Kim, Dong-Rak;Park, Soo-Jong;Nam, Uk-Won
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.4 no.2
    • /
    • pp.31-36
    • /
    • 2005
  • Machining technique for optical crystals with single point diamond turning tool is reported in this paper. The main factors influencing the machined surface quality are studied and regularities of machining process are drawn. Optical crystals have been known to more and more important applications in the field of modern optics. Ge is more brittle material of poor machinability. The traditional machining method is polishing which has many shortcomings such as low production efficiency, poor ability to be automatically controlled and edge effect of the workpiece. The purpose of our research is to find the optimum machining conditions for ductile cutting of Ge and apply the SPDTM technique to the manufacturing of ultra precision optical components of Ge. As a result, the surface roughness is the best when cutting speed is 180m/min, feed rate is 2mm/min, depth of cut is $0.5{\mu}m$ and nose radius of tool is 0.8mm.

  • PDF

A Study on the Modeling and Prediction of Machined Profile in Round Shape Machining (동근형상가공의 형상모델링과 예측에 관한 연구)

  • 윤문철
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2000.04a
    • /
    • pp.659-664
    • /
    • 2000
  • In this paper, We have discussed on the modeling of machined outer geometry which was established for the case of round shape machining, also the effects of externally machined profile are analyzed and its modeling realiability was verified by the experiments of roundness testing, especially in lathe operation. In this study, we established harmonic geometric model with the parameter harmonic function. In general, we can calculate the theoretical roundness profile with arbitrary multilobe parameter. But in real experiments, only 2-5 lobe profile was frequently measured. the most frequently ones are 3 and 5 lobe profile in experiments. With this results, we can predict that these results may be applies to round shape machining such as turning, drilling, boring, ball screw and cylindrical grinding operation in bearing and shaft making operation with the same method. In this study, simulation and experimental work were performed to show the profile behaviors. we can apply these new modeling method in real process for the prediction of part profile behaviors machined such as in round shape machining operation.

  • PDF

A Study on the Optimum Machining Conditions and Energy Efficiency of a Laser-Assisted Fillet Milling

  • Woo, Wan-Sik;Lee, Choon-Man
    • International Journal of Precision Engineering and Manufacturing-Green Technology
    • /
    • v.5 no.5
    • /
    • pp.593-604
    • /
    • 2018
  • Laser-assisted machining (LAM) is known to be an effective and economical technique for improving the machinability of difficult-to-machine materials. In the LAM method, material is preheated using a laser heat source and then the preheated area is removed by following cutting tool. For laser-assisted turning (LAT), the configuration of the system is not complicated because laser irradiates from a fixed position. In contrast, laser-assisted milling (LAMill) system is not only complicated but also difficult to control because laser heat source must always move ahead of the cutting tool along a three dimensional (3D) tool path. LAMill is still early stage and cannot yet be used to machine finished products with 3D shapes. In this study, a laser-assisted fillet milling process was developed for machining 3D shapes. There are no prior studies combining fillet milling and LAMill. Laser-assisted fillet milling strategy was proposed, and effective depth of cut (EDOC) was obtained using thermal analysis. Experiments were designed using response surface method and cutting force prediction equations were developed using statistical analysis and regression analysis. The optimum machining conditions were also proposed, and energy efficiency of the LAMill was analyzed by comparing the specific cutting energy of conventional machining (CM) and LAMill.

Effects of coating material and cutting parameters on the surface roughness and cutting forces in dry turning of AISI 52100 steel

  • Keblouti, Ouahid;Boulanouar, Lakhdar;Azizi, Mohamed Walid;Yallese, Mohamed Athmane
    • Structural Engineering and Mechanics
    • /
    • v.61 no.4
    • /
    • pp.519-526
    • /
    • 2017
  • In the present paper, the effects of cutting parameters and coating material on the performances of cutting tools in turning of AISI 52100 steel are discussed experimentally. A comparative study was carried out between uncoated and coated (with TiCN-TiN coating layer) cermet tools. The substrate composition and the geometry of the inserts compared were the same. A mathematical model was developed based on the Response Surface Methodology (RSM). ANOVA method was used to quantify the effect of cutting parameters on the machining surface quality and the cutting forces. The results show that feed rate has the most effect on surface quality. However, cutting depth has the significant effect on the cutting force components. The effect of coating layers on the surface quality was also studied. A lower surface roughness was observed when using PVD (TiCN-TiN) coated insert. A second order regression model was developed and a good accuracy was obtained with correlation coefficients in the range of 95% to 97%.

Micro-Crack Analysis from Ultra-Precision Diamond Turning of IR Optic Material (적외선 광학 소재의 초정밀 선삭가공시 발생하는 미세균열 연구)

  • Jeong, Byeongjoon;Kim, Geon-Hee;Myung, Tae Sik;Chung, Eui-Sik;Choi, Hwan-Jin;Yeo, In Ju;Jeon, Minwoo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.33 no.11
    • /
    • pp.905-910
    • /
    • 2016
  • Infrared (IR) optic lens can be fabricated by a single point diamond turning (SPDT) machine without subsequent polishing process. However, this machining process often leaves micro-cracks that deteriorate the surface quality. In this work, we propose an experimental design to remove micro-cracks on IR lens. The proposed design gathered data between cutting process condition and Rt surface roughness. This is of great importance because the scale of micro-cracks is a few micrometer. Rt surface roughness is suitable for analyzing maximum peak height signals of the profile. The experimental results indicate that feed per revolution variable is one of the most dominant variable, affecting the generation micro-cracks on IR lens surfaces.

In-Process Evaluation of Surface Characteristics in Machining

  • Jang, Dong-Young;Hsiao, Alex
    • Tribology and Lubricants
    • /
    • v.11 no.5
    • /
    • pp.99-107
    • /
    • 1995
  • This paper reported research results to develop an algorithm of on-lin evaluation of surface profiles and roughness generated by turning. The developed module consisted of computer simulation of surface profiles using mechanism of cutting mark formation and cutting vibrations, and online measurement of cutting vibrations. The relative cutting vibrations between tool and worpkiece were measured through an inductance pickup at the rate of one sample per rotation of the workpiece. The sampling process was monitored using an encoder to avoid conceling out the phase lag between waves. The digital cutting signals from the Analog-to-Digital converter were transferred to the simulation module of surface profile where the surface profiles were generated. The developed algorithm or surface generation in a hard turning was analyzed through computer simulations to consider the stochastic and dynamic nature of cutting process. Cutting tests were performed using AISI 304 Stainless Steel and carbide inserts in practical range of cutting conditions. Experimental results showed good correlation between the surface profiles and roughness obtained using the developed algorithm and the surface texture measured using a surface profilemeter. The research provided the feasibility to monitor surface characteristics during tribelogical tests considering wear effect on surface texture in machining.

Material Properties of GeSbSe Chalcogenide Glass and Fabrication Process for 8~12 ㎛ IR Region Aspherical Optical Lens (GeSbSe계 기반 8~12 ㎛ 파장대역 적외선 광학 렌즈 제작 및 비구면 렌즈 가공기술 개발)

  • Bae, Dong-Sik;Yeo, Jong-Bin;Han, Sang-Hyun;Lee, Hyun-Yong
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.26 no.3
    • /
    • pp.183-189
    • /
    • 2013
  • The chalcogenide glass has superior optical properties in IR region transmittances. We have determined the composition of GeSbSe chalcogenide glass for the application of good IR lenses, resulting in the composite rate of $Ge_{19}Sb_{23}Se_{58}$. The optical, structural, thermal and physical properties were measured by Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), Differential scanning calorimeter (DSC), X-ray computed tomography (X-ray CT) respectively. The fabrication of the chalcogenide glass lens for infrared optics applications was proposed using a diamond turning machining technology which is known as the suitable ways for the production cost reduction and the accurate fabrication process control.

Machining Characteristics in High Speed Endmill Operation Considering Clearance Angle (엔드밀 가공 시 여유각을 고려한 가공특성)

  • 박정남;고성림
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.8
    • /
    • pp.43-49
    • /
    • 2004
  • The objective of this research is to investigate the effect of clearance angle on cutting performance in high speed end milling operation. The tool geometry parameters have complex relationship with cutting process parameter. In order to explain the effect of clearance angle, 2D turning operation in lathe and end milling operations are performed. Tools with different clearance angles are manufactured. Cutting forces, machining accuracy and tool life are examined according to the change of clearance angle. As clearance angle increases, cutting force decreases and machining accuracy improves. But it has been proved that there exists the optimal clearance angle according to the diameter of end mill for maximum tool life which is measured by frank wear.

Manufacturing Mechanism of FIB-CVD using Focused Ion Beam (집속이온빔의 가공 공정 메카니즘 연구)

  • 강은구;최병열;이석우;홍원표;최헌종
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.925-928
    • /
    • 2004
  • The application of focused ion beam (FIB) technology in micro/nano machining has become increasingly popular. Its use in micro/nano machining has advantages over contemporary photolithography or other micro/nano machining technologies such as small feature resolution, the ability to process without masks and being accommodating for a variety of materials and geometries. This paper was carried out some experiments and verifications of mechanism on FIB-CVD using SMI8800 made by Seiko. FIB-CVD has in fact proved to be commercially useful for repair processes because the beam can be focused down to 0.05$\mu\textrm{m}$ dimensions and below and because the same tool can be used to sputter off material with sub-micrometer precision simply by turning off the gas ambient. Recently the chemical vapour deposition induced ion beam has been required more deposition rate and accurate pattern because of trying to manufacture many micro and nano parts. Therefore this paper suggested the optimization parameters and discussed some mechanism of chemical vapour deposition induced ion beam on FIB-CVD for simple pattern.

  • PDF

병렬 NC 기계가공에서 최적 공정계획 생성을 위한 유전알고리즘의 적용

  • 조규갑;문병근
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.876-879
    • /
    • 1995
  • Parallel NC machines are a new generation of machine tools aimed at increasing maching accuracy and reducing part cycle time. In addition to their capacity to perform both milling and turning operations, these machine tools can perform multiple machining operations simultaneously,involving one or more parts at a time, and can completely finish a part in a single setup. Due to the lack of a computer-aided process planning system, these machines are used in industry today as dedicated, mass-production machines. This pape presents methodology for generating optimal process plan for each parallel machine tool using a genetic algorithm.

  • PDF