• Title/Summary/Keyword: Turn-to-turn fault

Search Result 114, Processing Time 0.026 seconds

Analysis of Transient Characteristics of SFCL using the Three-Phase Transformer and Power Switch (삼상 변압기와 전력용 스위치를 이용한 초전도 한류기의 과도특성 해석)

  • Jung, Byung-Ik;Choi, Hyo-Sang;Park, Jung-Il;Cho, Geum-Bae
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.11
    • /
    • pp.1743-1747
    • /
    • 2012
  • The research of superconducting fault current limiter (SFCL) for reduction of the fault current is actively underway in the worldwide. In this paper, we analyzed the characteristics of a SFCL using the transformer and superconducting elements combined mutually in accordance with the fault types. The structure of this SFCL was composed of the secondary and third windings of a transformer connected to the load and the superconducting element, respectively. The provided electric power flew into the load connected to the secondary winding of the transformer in normal state. On the other hand, when the fault occurred in power system, the fault current was limited by closing the line of third winding of the transformer. At this time, the effect of the fault was minimized by opening the fault line in secondary winding of a transformer in power system. The sensing of the fault state was performed by the current transformer(CT) and then turn-on and turn-off switching behavior of the secondary line in the transformer was performed by the silicon-controlled rectifier(SCR). As a result, the proposed SFCL limited the fault current within one-cycle efficiently. Also, the degradation of the superconducting element in the normal state was avoided.

Comparison of Fault Detection Methods for the BLDC Motor Using the Current Sensor (전류센서를 이용한 BLDC 전동기 권선 결함 검출 방법 비교)

  • Lee, Jae-Hyun
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.34 no.8
    • /
    • pp.1115-1127
    • /
    • 2010
  • Several methods have been applied to detect winding faults (turn-to-turn short). The representative approaches have been focusing on current signals. The current signal can give important information to extract features and to detect faults. In this study, current sensors were installed to measure signals for fault detection of BLDC motors. Therefore, it is necessary to select proper feature extraction methods among the popular methods that use current signals.

Analysis on Hysteresis Characteristics of a Transformer Type Superconducting Fault Current Limiter (변압기형 초전도전류제한기의 히스테리시스 특성 분석)

  • Lim, Sung-Hun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.23 no.2
    • /
    • pp.164-168
    • /
    • 2010
  • The transformer is expected to be an essential component of a superconducting fault current limiter (SFCL) for both the increase of its voltage ratings and the simultaneous quench due to different critical current between high-$T_C$ superconducting (HTSC) elements comprising the SFCL. However, in order to perform the effective current limiting operation of the SFCL, the design for the SFCL considering the hysteresis characteristics of the iron core is required. In this paper, the influence of the hysteresis characteristics of the iron core comprising the transformer type SFCL on its current limiting characteristics was investigated. Through the comparative analysis on the hysteresis curves due to the ratio of the turn number between the 1st and the 2nd windings of the transformer, the proper design condition for the ratio of the turn number to achieve the effective current limiting operation of the transformer type SFCL could be obtained.

Optimal Design and fabrication of Prototype DC Reactor for Inductive Superconducting fault Current Limiter (유도형 고온초전도 한류기용 Prototype 직류 리액터의 설계와 제작)

  • 김태중;강형구;고태국
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.16 no.12S
    • /
    • pp.1292-1298
    • /
    • 2003
  • In this paper, dc reactor lot the inductive high-Tc superconducting fault current limiter (SFCL) was optimally designed by finite element method(FEM). The Prototype high-Tc do reactor was manufactured and compared to the results of design. This dc reactor consists of 4∼stacked double pancake coils which are wounded with Bi-2223 wire coated with SUS315L. Kapton tape is used for the insulation of turn to turn and layer to layer. Each pancake is connected in series by soldering Finally, optimal design and manufacture method lot the dc reactor is suggested in this paper. Through the comparison of result of optimal design and experimental result of prototype high-Tc superconducting dc reactor, reliance on the design of the high-Tc dc reactor tot the 1.2 kV/80 A SFCL is proved.

Stator Winding Fault Diagnosis in Small Three-Phase Induction Motors by Park's Vector Approach (Park's Vector 기법을 이용한 소형 3상 유도 전동기의 권선 고장 진단)

  • 박규남;한민관;우혁재;송명현
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.7 no.6
    • /
    • pp.1291-1296
    • /
    • 2003
  • This paper deals with efficient diagnostic for stator winding fault of 3-phase induction motor using a current Park's vector approach. This method firstly transforms 3-phase stator current to vertical axis current and horizontal axis current of Park's Vector, and then obtains the each Park's Vector Pattern and detects stator winding fault by comparing to Park's Vector Pattern of healthy and fault. Experimental results, obtained by using induction motor having inter-turn fault of 2, 10, 20 turn, demonstrate the effectiveness of the proposed technique, for detecting the presence of stator winding fault under 25%, 50%, and 100% of full load condition.

Improved Gate Drive Circuit for High Power IGBTs with a Novel Overvoltage Protection Scheme (과전압 제한 기능을 갖는 새로운 IGBT 게이트 구동회로)

  • Lee, Hwang-Geol;Lee, Yo-Han;Suh, Bum-Seok;Hyun, Dong-Seok;Lee, Jin-Woo
    • Proceedings of the KIEE Conference
    • /
    • 1996.11a
    • /
    • pp.346-349
    • /
    • 1996
  • In application of high power IGBT PWM inverters, the treatable power range is considerably limited due to the overvoltage caused by the stray inductance components within the power circuit. This paper proposes a new gate drive circuit for IGBTs which can actively suppress the overvoltage across the driven IGBT at turn-off and the overvoltage across the opposite IGBT at turn-on while preserving the most simple and reliable power circuit. The turn-off driving scheme has adaptive feature to the amplitude of collector current, so that the overvoltage is limited much effectively at the larger collector current. The turn-on scheme is to decrease the rising rate of the collector current by increasing input capacitance during turn-on transient when the gate-emitter voltage is greater than threshold voltage. The experimental results under various normal and fault conditions prove the effectiveness of the proposed circuit.

  • PDF

Control of Grid Connected Type PCS to Minimize Voltage Disturbance at Line Fault (계통 사고 발생시 전압 변동을 최소화 하기위한 계통연계형 PCS의 제어 기법)

  • Jung, Jae-Hun;Kwon, Chang-Keun;Nho, Eui-Cheol;Kim, In-Dong;Kim, Heung-Geun;Chun, Tae-Won
    • Proceedings of the KIPE Conference
    • /
    • 2011.11a
    • /
    • pp.257-258
    • /
    • 2011
  • This paper describes a new method for the seamless operation mode transfer of a PCS with minimized voltage disturbance. The proposed method provides reduced STS turn off time after line fault and smooth mode change between current and voltage control of the PCS. The usefulness of the method is verified through simulations with the consideration of the time delay in detecting a line fault and SCR turn-off time.

  • PDF

A Study on Stator Winding Turn-Fault Model for Fault Diagnosis in Inverter-Driven Permanent Magnet Moor Drives (고장진단을 위한 영구자식 동기전동기의 권선 단락에 의한 고장모델 연구 및 특성해석)

  • Kim, Kyeong-Hwa;Choi, Dong-Uk;Gu, Bon-Gwan;Jung, In-Soung
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.23 no.5
    • /
    • pp.18-28
    • /
    • 2009
  • To analyze influences under faults caused by a stator winding short and to evaluate an effectiveness of a diagnostic algorithm a faulty model for an inverter-driven permanent magnet synchronous motor is presented. Even though the conventional dq motor model obtained through the transformation of phase voltage model is widely used to analyze and control the motor, it can not be used in the analysis of a faulty motor since the 3-phase balanced condition is no longer hold under the fault caused by a stator winding short, and thus, it is very difficult to obtain motor input voltages from the pole voltage of an inverter. To overcome this problem, a faulty model for an inverter-driven permanent magnet synchronous motor is proposed by considering the line voltage of 3-phase variables. The effectiveness of the proposed faulty model is verified through comparative simulations and experiments using DSP TMS320F28335 and motor built to allow a partial short of inter-turn.

A Stator Fault Diagnosis of an Induction Motor based on the Phase Angle of Park's Vector Approach (Park's Vector Approach의 위상각 변이를 활용한 유도전동기 고정자 고장진단)

  • Go, Young-Jin;Lee, Buhm;Song, Myung-Hyun;Kim, Kyoung-Min
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.20 no.4
    • /
    • pp.408-413
    • /
    • 2014
  • In this paper, we propose a fault diagnosis method based on Park's Vector Approach using the Euler's theorem. If we interpreted it as Euler's theorem, it is possible to easily find the phase angle difference between the healthy condition and the fault condition. And, we analyzed the variation of the phase angle and performed the diagnostic method of the induction motor using feature vectors that were obtained by using a Fourier transform. The analysis of time and speed variation of the motor was performed and, as a result, we could find more soft variations than rough variations. In particular, the analysis of the distortion through each phase shows that two-turn and four-turn shorted motors are linearly separable. In this experiment, we know that the maximum breakdown threshold value for determining steady-state fault detection is 49.0788. Simulation and experimental results show the more detectable than conventional method.

Protection relaying algorithm for DFIG using a DQ equivalent circuit (DQ 등가회로를 이용한 DFIG 보호계전방식)

  • Kang, Yong-Cheol;Lee, Ji-Hoon;Jang, Sung-Il;Kim, Yong-Gyun
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.23-24
    • /
    • 2007
  • Most of modern wind turbines employs a doubly-fed induction generator (DFIG) system because it has many advantages due to variable-speed operation, relatively high efficiency and it small converter size. The DFIG system uses a wound rotor induction machine so that the magnetizing current of the generator can be fed from both the stator and the rotor. This paper presents a protection relaying algorism for DFIG using the DQ equivalent circuits. The induced voltages calculated from the stator and rotor sides are nearly the same in the steady state. They become different in the DQ equivalent circuits during an internal fault. The proposed algorithm compares the inducted voltages estimated from the stator and the rotor circuit converted into the stationary reference frame. If the difference between the induced voltages exceeds the threshold, the proposed algorithm detects an turn-to-turn fault.

  • PDF