• Title/Summary/Keyword: Turn-mail Spindle Speed

Search Result 2, Processing Time 0.016 seconds

Effect of Cutting Conditions on Surface Roughness in CNC Lathe C-axis Milling Cutting (CNC선반 C축 밀링가공에서 표면 거칠기에 미치는 절삭조건의 영향)

  • Shin, Kuk-Sik
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.11 no.3
    • /
    • pp.110-115
    • /
    • 2012
  • For domestic aircraft industry, not mass production of components is limited, small production scale of the order is made by part because many kinds of hundreds of thousands of kinds of small quantity batch production system are taking. But the high reliability and stability are required during the processing because they require high precision parts are required. It is found that when C-axis rotation speed was increased, the diameter of the cutting tool decreased with increasing surface roughness, while the turn-mail feed rate was increased with increasing the surface roughness.

Effect of Surface Roughness on Cutting Conditions in CNC lathe C-Axis Milling Arc Cutting (CNC선반 C축 밀링 원호가공에서 절삭조건이 표면 거칠기에 미치는 영향)

  • Shin, Kuk-Sik
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.13 no.4
    • /
    • pp.99-105
    • /
    • 2014
  • The domestic airline industry undertakes the production of finished products by assembling existing self-described components via a design process which involves assembly and production steps, after which many of the finished products are exported. However, high reliability and stability must be guaranteed, because customers require high-precision components at the time of manufacturing. In the aircraft parts industry, the mass production of high-value-added parts is limited. Therefore, a small production scale depending on the part is used, as many types of conventional CNC lathe machines with X-axis and Z-axis as well as Z-axis and C-axis CNC milling are used. The parts also rely on high-pressure air to increase production. The most important factors are good stability during processing, as high-precision parts are required, as noted above. It was found that as the C-axis rotation speed increased, the diameter of the cutting tool decreased with a decrease in the surface roughness, while the workpiece rotation speed increased with an increase in the surface roughness.