• Title/Summary/Keyword: Turn off Speed

Search Result 86, Processing Time 0.033 seconds

A Design of High Speed SRM Drive System (SRM의 고속구동을 위한 제어시스템 설계)

  • Lee, Ju-Hyun;Lee, Dong-Hee;Ahn, Jin-Woo
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.55 no.7
    • /
    • pp.337-345
    • /
    • 2006
  • This paper proposes a high speed SRM drive system for blower application with a new 4-level inverter and precise excitation position generator. For a high speed blower, a proper inverter and control method are proposed and the output characteristics are analyzed. In order to get a fast build-up and demagnetization of excitation current, a 4-level inverter system is proposed. The proposed 4-level inverter has additional charge capacitor, power switch and diode in the conventional asymmetric converter. The charged high voltage is supplied to the phase winding for fast current build-up, and demagnetization current is charged to additional capacitor of the 4-level inverter. In addition, a precise excitation position generator can reduce turn-on and turn-off angle error according to sampling period of digital control system. The proposed high speed SRM drive system is verified by computer simulation and experimental results.

Output Voltage Control Method of Switched Reluctance Generator using PID Control (PID 제어를 이용한 Switched Reluctance Generator의 출력 전압제어)

  • 김영조
    • Proceedings of the KIPE Conference
    • /
    • 2000.07a
    • /
    • pp.701-704
    • /
    • 2000
  • A SRG(Switched Reluctance Generator) has many advantages such as efficiency simple controllability low cost and robustness compared with outer machines. But the theories that have been adopted as SRG control methods up to the present are complicated. This paper proposes a simple control methods using PID which controls only a turn-off angle while making turn-on angle signals of SRG constant. controlling the voltage differences between the reference and the real value and calculating the proper turn-off angle of the load variations can implement to keep the output voltage constant. the control method suggested in this paper enhances the efficiency of this system and simplifies the hardware and software by using only the voltage and speed sensors. The proposed method is verified by experiment

  • PDF

A Three-Phase Converter with High Power Factor Using Soft-Switching Module (소프트 스위칭 모듈을 이용한 3상 고역률 컨버터)

  • 김재홍;정진규;백승택;한병문;김현우
    • Proceedings of the KIPE Conference
    • /
    • 1999.07a
    • /
    • pp.663-666
    • /
    • 1999
  • This paper describes a three-phase converter with high power factor using a scheme of discontinuous current mode(DCM). The proposed system can replace the conventional diode bridge with step-up chopper which is used as a converter for adjustable speed drive. In this system, the current of reactor is zero at turn-on instance because of operation in DCM, while the switch turns off at the instance of maximum current. A soft-switching scheme with lossless snubber was proposed. Therefore, a zero-voltage switching at turn off can be achived by lossless snubber and zero-current switching at turn on can be obtained by operating under DCM. A theoretical analysis and computer simulations with PSpice were done to verify the operation of the proposed system. Also a prototype of hardware system was built and tested for verifying the feasibility of proposed system.

  • PDF

An Improved Asymmetric Half-Bridge Converter for Switched Reluctance Motor in Low-Speed Operation with Current Regulated Mode

  • Woothipatanapan, Sakhon;Chancharoensook, Phop;Jangwanitlert, Anuwat
    • Journal of Power Electronics
    • /
    • v.15 no.6
    • /
    • pp.1533-1546
    • /
    • 2015
  • This study presents a novel method for reducing the switching losses of an asymmetric half-bridge converter for a three-phase, 12/8 switched reluctance motor operated in low speed. In particular, this study aims to reduce the switching-off losses of chopping switches in the converter when operated in the current regulated mode (chopping mode). The proposed method uses the mixed parallel operation of IGBT (chopping switch) and MOSFET (auxiliary switch). MOSFET is precisely controlled to momentarily conduct prior to the turn-off interval of the IGBT. Consequently, the voltage across the switches is clamped to approximately zero, substantially decreasing the turn-off switching losses. The analytical expressions of power losses are extensively elaborated. Compared with the conventional asymmetric half-bridge converter, the modified converter can effectively minimize the switching losses. Therefore, the efficiency of the converter is eventually improved. Computer simulation and experimental results confirm the effectiveness of the proposed technique.

Design of High Speed Drive (고속 SRM 구동시스템 설계)

  • Kim, Tae-Hyoung;An, Young-Joo;Lee, Dong-Hee;Ahn, Jin-Woo
    • Proceedings of the KIEE Conference
    • /
    • 2006.04b
    • /
    • pp.95-98
    • /
    • 2006
  • This paper proposes high speed SRM drive system for blower with a new 4-level inverter and precise excitation position generator. For the high speed blower, a proper inverter and control method are proposed and the output characteristics are analyzed. In order to get a fast build-up and demagnetization of excitation a current, 4-level inverter system is proposed. The proposed 4-level inverter has additional charge capacitor, power switch and diode in the conventional asymmetric converter. The charged high voltage is supplied to the phase winding for fast current build-up, and demagnetization current is charged to additional capacitor of 4-level inverter. In addition, a precise excitation position generator can reduce turn-on and turn-off angle error according to sampling period of digital control system. The proposed high speed SRM drive system is verified by computer simulation and experimental result.

  • PDF

A Design of High Speed SRM Drive System (고속 SRM 구동 시스템 설계)

  • Lee, Ju-Hyun;Kim, Bong-Chul;Lee, Dong-Hee;Ahn, Jin-Woo
    • Proceedings of the KIEE Conference
    • /
    • 2005.10c
    • /
    • pp.110-113
    • /
    • 2005
  • This paper proposes high speed SRM drive system for blower with a new 4-level inverter and precise excitation position generator. For the high speed blower, a proper 12/8 SRM is designed and analyzed. In order to get a fast build-up and demagnetization of excitation a current, now 4-level inverter system is proposed. The proposed 4-level inverter has additional charge capacitor, power switch and diode in the conventional asymmetric converter. The charged high voltage is supplied to the phase winding for fast current build-up, and demagnetization current is charged to additional capacitor of 4-level inverter. In addition, a precise excitation position generator can reduce turn-on and turn-off angle error according to sampling period of digital control system. The proposed high speed SRM drive system is verified by computer simulation.

  • PDF

A New Three-Phase Current Modulation Method to Suppress the Commutation Torque Ripple of Brushless DC Motor

  • Wang, Zhiqiang;Yin, Shuai;Ma, Tiehua
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.5
    • /
    • pp.1925-1933
    • /
    • 2017
  • The brushless DC motor's commutation torque ripple is caused by inconsistency in the rate of phase current change. Thus, a method that considers armature resistance is proposed to modulate phase current. The three-phase control strategy, which involves the "open-phase conduction, off-phase pulse width modulation, and maintained non-commutation phase" technique, is applied during commutation at full-speed segments of the motor. Changes in each phase current are analyzed theoretically by establishing mathematical model based on phase current to determine the relative difference among shutdown phase, duty, and motor operating parameters. The turn-on and turn-off phase current change rates are made to be consistent to ensure less non-commutation phase current ripple, then the torque ripple is inhibited. The simulation results show that the phase commutation current and torque ripple coefficient of the proposed method are reduced from 56.9% and 55.5% to 6.8% and 6.1%, respectively. In the experiment system, the pulsation coefficient of the motor phase current is reduced from 40.0% to 16.7% at low speed and 50.0% to 18.8% at high speed. The simulation and experimental results show that the proposed control method significantly inhibits commutation current and torque in the full section.

Single-Chip Microprocessor Control for Switched Reluctance Motor Drive

  • Hao Chen;Ahn, Jin-Woo
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • v.2B no.4
    • /
    • pp.207-213
    • /
    • 2002
  • The paper introduces a switched reluctance motor drive system based on an 80C31 and an Intel 80C 196KB single-chip microprocessor control. Advance schemes are used in turn-on and turn-off angles with the power converter's main switches during traction and regenerative braking. The principles of traction speed control and braking torque control are given. The hardware and software patterns in the 80c31 and the Intel 80C196KB single-chip microprocessor control system are also presented.

Finite Element Analysis considering Asymmetric Bridge Converter in 6/4 Switched Reluctance Motor (비대칭 브리지 컨버터를 고려한 6/4 스위치드 릴럭턴스 전동기의 유한요소 해석)

  • Choi, Jae-Hak;Park, Jae-Bum;Lee, Seung-Jun;Ahn, Byeong-Lib;Lee, Ju;Kim, Suk-Tae
    • Proceedings of the KIEE Conference
    • /
    • 2003.07b
    • /
    • pp.720-722
    • /
    • 2003
  • This paper Presents a design schemes to minimize torque ripple in 6/4 Switched Reluctance Motor (SRM) using transient Finite Element Analysis (FEA) in which the magnetic field is combined with a driving circuit. Pole arcs and switching angles are major design factors. If these design factors are considered independently, the enhancement of SRM Performance is restricted. Therefore, this paper proposes not only optimal combination of stator pole arc and rotor pole arc but also the turn-on and turn-off angles as a function of pole arcs. Especially, turn-on and turn-off angle are formulated from a voltage equation and feasible design ranges are suggested with variable speed.

  • PDF

Design of SR Drive Using Passive Converter for Hydraulic Pump System (패시브 컨버터를 적용한 유압유니트용 SRM 제어기 설계)

  • Seok, Seung-Hun;Liang, Jianing;Lee, Dong-Hee;Ahn, Jin-Woo
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.863_864
    • /
    • 2009
  • Design and drive characteristics of SR drive for hydraulic pump system using passive converter is presented in this paper. In oder to get the high performance, a simple passive circuit is added in the front-end of a conventional asymmetric converter, which consists of three diodes and one capacitor. This passive converter has the high demagnetization voltage, to reduce the demagnetization time. Futhermore optimal turn-off angle for the proposed passive converter is proposed. According to motor speed and current, an optimal turn-off angle can be achieved by look-up table to reduce torque ripple. The characteristic of proposed hydraulic pump system using passive converter is verified by simulation and experimental results.

  • PDF