• Title/Summary/Keyword: Turf management

Search Result 62, Processing Time 0.017 seconds

Present State of Turf Management of School Playgrounds in Gyeonggi Province of Korea (경기도내 천연잔디 학교 운동장 잔디관리 현황)

  • Han, Sang Wook;Soh, Ho Seob;Won, Seon Yi;Ju, Young Cheoul
    • Weed & Turfgrass Science
    • /
    • v.4 no.4
    • /
    • pp.405-412
    • /
    • 2015
  • Forty schools having natural turf playgrounds were investigated by on-spot investigation and oral interviews with relevant school officials to find out basic information on turfgrass management practices of school playgrounds in Gyeonggi province. Average area of playground was $3,890m^2$ per school and $12m^2$ per student. Ninety five percent of turf playgrounds were managed by school staff and ninety percent of schools spent less than 5 million won per year for turf management. The difficulties in turfgrass management were considered as a major challenge for the schools, followed by turfgrass management cost. Among the management practices, school officials pointed out weed management as the most difficult work, followed by irrigation. The average number of fertilization and mowing was 2 and 6 times per year, respectively. About the half of playgrounds were irrigated only when there was wilting symptom. Zoysiagrass was the most popular choice for the school playgrounds and only three school playgrounds were established with pop-up irrigation system. Fourteen school playgrounds had good turf quality but the rest of school playgrounds had inadequate turf quality requiring minor or full renovation.

Ecological Management of Turf Insects and Zoysia Large Patch by Mixing Turfgrass Species (잔디 혼식을 통한 생태학적 병충해 관리)

  • 박봉주
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.31 no.3
    • /
    • pp.107-113
    • /
    • 2003
  • Ecological control can contribute to the sustainibility of vegetation management systems by reducing the input currently derived from non-renewable fossil energy sources. The use of turfgrass mixtures is an important tool in turf management. Turfgrass mixtures of two or more compatible and adapted species provide improved tolerance to pest and environmental stress, more so than monostands. The objectives of this study were to evaluated turf insects, pests and zoysia large patch control by turgrass mixtures. In April 2001 and 2002, plots were inoculated with 50g of Rhizoctonia solani AG2-2LP inoculum. Inoculum were treated within a 29cm diamater circle at Zoysia japonica, Zoysia japonica, Poa pratenis, or Festuca arundinacea mixtures. After four weeks, disease severity in each plot was determined. plot area visual ratings were assessed visually on a linera 0 to 100%. In August 2001 and October 2002, turf insects and pests in each plot were investigated in 10cm deep soil cores with 8cm diameters using hole cut. Zoysia large patch affected zoysiagrass monostands more severly than zoysiagrass and cool-season turfgrasses mixtures. It was suggested that the barrier effect of cool-season turfgrass suppressed zoysia large patch in the mixture of zoysiagrass and cool-season turfgrasses. Also, warm-season and cool-season turfgrasses mixtures suppressed insect populations more efficiently than warm-season turfgrass monostands.

Present Situation of School Turf Ground in Korea and Japan (한국과 일본의 학교 잔디운동장 현황)

  • ;Fujisaki, Kenichiro
    • Asian Journal of Turfgrass Science
    • /
    • v.13 no.2
    • /
    • pp.91-100
    • /
    • 1999
  • School is the center for life of the students, 30% of Korean population. Students spend half of their daily life at school. However, amenity of school is not so good because school grounds in Korea are covered with soil while in USA and Europe with turf. This study was conducted to provide guidelines for constructing natural turf ground at school. 1. As of 1999, number of school grounds covered with turfgrass in Korea is only 130 out of 10,345. More turfs grounds should be constructed to improve amenity of school. Dept. of Education in Japan supports schools to establish turf grounds. 2. In Korea, only Zoysia japonica is used while in Japan several turfgrasses such as Zlysiagrass, bermudagrass and tall fescue are used. 3. In Korea and Japan, turfgrass at school is planted on soil based rootzone system resulting poor quality by heaby traffic. Recently in Japan, sand based rootzone systems such as Califonia and USGA systems are used at the schools with many students. 4. School turf both in Korea and Japan was managed by students and teachers. Turf quality of schools in Korea was not so good due to the poor management.

  • PDF

The Present Research of Turfgrass Science in Japan (일본의 최신 잔디연구 현황)

  • Park, Nam-Il;Jang, Duk-Hwan;Yang, Seung-Weon;Shim, Gyu-Yul
    • Asian Journal of Turfgrass Science
    • /
    • v.25 no.2
    • /
    • pp.237-242
    • /
    • 2011
  • The 2011 Japanese Society of Turfgrass Science was divided in oral presentation, sectional meeting and small symposium, and the total 55 subject was announced. The oral presentation was reported physiological ecology of turf, disease and weed; field management; pesticidal activity and spectrum of new turf pesticides. Above all, there was presentation that investigated control method of necrotic ring spot of new turf disease and Cyperus brevifolius, annual bluegrass and mouse-ear chickweed. In addition, the control effect of new registration fungicide (Furametpyr) and herbicides (S-metolachlor, Flucetosulfuron and Foramsulfuron) were announced. There was various information interchange through 4 kinds of subjects of a golf course, ground turf, a urban park greens and ground cover plants greening by the sectional meeting, and the genetic resource of turfgrass discussed by small symposium. Specially, park greens sectional meeting was announced about the radioactive material contaminated on mechanism and effectively removal method of the radioactivity contaminant from public park, school ground and domestic lawn.

Study on Transplanting Cultural Methods of Turf Seedling IV. Effect of Turf Growth to Transplanting Distances (잔디 육묘 이식재배법에 관한 연구 IV 재식거리가 잔디생장에 미치는 영향)

  • Lee Myoung-Sun
    • Korean Journal of Plant Resources
    • /
    • v.19 no.1
    • /
    • pp.130-132
    • /
    • 2006
  • Objective of this study was conducted to determine the proper transplanting distance for turf cultivation in the bare land. For investigating the proper transplanting distance of turf cultivation, it were measured the growth characteristics as plant height, root length, number of branching, number of nodule and length of stolon, and yield properties such as fresh weight and dry matter. In $30{\times}30cm$ of transplanting distance plot, plant height, root length, number of branching, number of nodule and length of stolen were 14.1cm, 22.0cm, 7.0, 31 and 77.5cm, and also the fresh weight and dry matter were 16.1 and 11.0g/plant, respectively. It was observed that growth characteristics and yield properties were highest at $30{\times}30cm$ of transplanting distance, respectively. Therefore, it considered that the proper transplanting distance was $30{\times}30cm$ for turf cultivation in the bare soil.

A Study on the Combustion Test of Artificial Turf Installed on Field (실외에 설치되는 인조잔디의 연소시험에 관한 연구)

  • Min, Se-Hong;Kim, Yeon-Hwang
    • Fire Science and Engineering
    • /
    • v.28 no.2
    • /
    • pp.48-53
    • /
    • 2014
  • In this study, we would evaluate fire risk by domestic standard for artificial turf installed on field and roofs. Today domestic regulation for artificial turf only applies to outdoor uses and especially KS M 3888-1 has compulsion but limited to school athletic facilities. Indoor regulation complying with National Emergency Management Agency (No. 2012-35) was enacted as recommendations. Thus this study did combustion test of artificial turf installed on field. Analyzed result by 45 degree flammability test, standard was inadequate to judge the fire risk so we compared and analysed its characteristic through combustion test of flame retardant finishing carpet used as flooring. Test and assessment result of its ignitionability by 45 degree flammability test showed that carpet was satisfied with flame retardant finishing performance standard contrary to artificial turf. For this reason, by conducting cone calorimeter test, the combustion property after ignition would be analyzed and evaluated and then this study will suggest a countermeasure for strengthening standard.

The Growth Effects of Creeping Bentgrass by Application of Liquid Fertilizer with Saponin and Liquid Fertilizer with Amino Acid (사포닌과 아미노산 함유비료의 살포가 크리핑벤트그래스의 생육에 미치는 효과)

  • Kim, Young-Sun;Ham, Suon-Kyu;Lee, Jae-Pil;Hwang, Young-Soo
    • Asian Journal of Turfgrass Science
    • /
    • v.26 no.1
    • /
    • pp.54-59
    • /
    • 2012
  • This study was conducted to evaluate to the effect of liquid fertilizer with saponin (SLF) and liquid fertilizer with amino acid (ALF)on the growth of creeping bentgrass. In creeping bentgrass, turf color index, chlorophyll index, dry weight and shoot number were measured. It was hardly affected by SLF and ALF applications in investigation of chemical properties of the soil. By applying SLF and ALF, turf color index and chlorophyll index in 2SLF and 2ALF were increased more than CF, and shoot number and root length in 2SLF, ALF and 2ALF were higher than CF. In correlation coefficient among growth factors of creeping bentgrass, turf quality was significantly different in root length, shoot number, dry weight, and content of N and K in turf tissue (P<0.05), N content of tissue was significantly in root length, shoot number and dry weight (P<0.05), and K content was significantly in shoot number and dry weight (P<0.05). These results suggested that application of functional liquid fertilizers such as SLF and ALF was expected to replace compound fertilizer in turf management and that applied SLF and ALF was stimulated the uptake of N and K into turf so that turf qualities were improved by enhancing growth shoot and root of turf.

Differences in Soil Chemical Properties Under Multi-layer System, USGA System and Mono-layer System for a Sports Turf (스포츠용 잔디의 다단구조, USGA구조 및 단층구조 지반에서 토양 화학성 차이)

  • Kim, Kyoung-Nam
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.9 no.5
    • /
    • pp.50-59
    • /
    • 2006
  • This study was initiated to investigate soil chemical properties under different soil systems. Data such as soil acidity(pH), electrical conductivity(EC), organic matter content(OMC), and cation exchange capacity(CEC) were analyzed with samples from multi-layer, USGA, and mono-layer systems. N, P, K and micronutrients were also measured. Multi-layer system was built up to 60-cm depth with rootzone layer, intermediate layer and two drainage layers. USGA system 45 centimeters deep was constructed with rootzone layer, intermediate layer and drainage layer. Mono-layer system, however, was made only with a 30-cm rootzone layer. Differences were observed in soil pH, EC, OMC, CEC and micronutrients. Soil pH was acceptable for turfgrass growth a year after establishment, being 5.5 to 6.5 in the study. Differences were greatly observed for EC among soil systems. Values of EC for multi-layer, USGA, and mono-layer systems were 39.79, 31.26 and 103.54 uS/em, respectively. The increase rate was approximately 4 to 8 times greater with mono-layer system than those with other two systems. Therefore, it was necessary to avoid micronutrient deficiency such as Fe, Mn etc. through an effective management program in mono-layer system because of its faster potential feasibility of salt accumulation. The greatest OMC was associated with USGA system, being 0.97% which was 11% over that of the other systems. Slight differences were observed for CEC among them. Mono-layer system produced 1.45 me/100g, 10.3% and 8.9% lower in CEC than those of multi-layer and USGA system, respectively. Micronutrients such as Fe, Zn, and Mn etc. were below the level required for turf growth, regardless of soil systems. It was considered that one year after turf establishment was not enough to build up micronutrients in sand-based soil systems to the normal level for a turf growth. These results demonstrate that intensive management program including grow-in concept fertilization should be integrated into sand-based soil systems, even after a year in establishment. Regular nutrient monitoring by soil analyses is a strong necessity to decide the kinds and amount of fertilizer. Also, strategic management program must be selectively employed according to sports turf soil systems.

Biological Turf Restoration

  • Wilson, Carol W.;Kim, Hyung-Ki
    • Asian Journal of Turfgrass Science
    • /
    • v.7 no.1
    • /
    • pp.31-34
    • /
    • 1993
  • There is a growing concern in the United Stares over the environmental and human health implications associated with heavy use of water, pesticides, and inorganic ferilizers in maintaining picture perfect golf courses. There is also a growing awareness that a beautiful course is not necessarily a healthy course. The following discussion reviews the interrelationship of turfgrass and the soil that supports it and provides basic information on currently available alternatives to turf management practices that feature intensive application of inorganic fertilizers. water and pesticides. Soil is a dynamic natural environment in which microorganisms play an important role. Soil contains a large mass of microorganisms which produce thousands of enzymes that can catalyze the transformation and degradation of many organic molecules. (In top soil under optimum conditions may contain 10 billion cells per gram of soil.). Turfgrass and the soil which supports it are interdependent. The natural organic cycle as applied to turf and soil begins with healthy vigorous grass plants storing up the sun's energy in green plant tissues as chemical energy. Animals obtain energy by eating plants and when plants and animals die, their wastes are returned to the soil and provide "food" for soil microorganisms. In the next step of the organic cycle soil microorganisms break down complex plant tissues into more basic forms and make the nutrients available to grass roots. Finally, growing plants extract the available nutrients from the soil. By free operation of this organic cycle, natural grasslands have some of the most fertile soils on earths.

  • PDF