• Title/Summary/Keyword: Turf Grass

Search Result 101, Processing Time 0.027 seconds

Biological Turf Restoration

  • Wilson, Carol W.;Kim, Hyung-Ki
    • Asian Journal of Turfgrass Science
    • /
    • v.7 no.1
    • /
    • pp.31-34
    • /
    • 1993
  • There is a growing concern in the United Stares over the environmental and human health implications associated with heavy use of water, pesticides, and inorganic ferilizers in maintaining picture perfect golf courses. There is also a growing awareness that a beautiful course is not necessarily a healthy course. The following discussion reviews the interrelationship of turfgrass and the soil that supports it and provides basic information on currently available alternatives to turf management practices that feature intensive application of inorganic fertilizers. water and pesticides. Soil is a dynamic natural environment in which microorganisms play an important role. Soil contains a large mass of microorganisms which produce thousands of enzymes that can catalyze the transformation and degradation of many organic molecules. (In top soil under optimum conditions may contain 10 billion cells per gram of soil.). Turfgrass and the soil which supports it are interdependent. The natural organic cycle as applied to turf and soil begins with healthy vigorous grass plants storing up the sun's energy in green plant tissues as chemical energy. Animals obtain energy by eating plants and when plants and animals die, their wastes are returned to the soil and provide "food" for soil microorganisms. In the next step of the organic cycle soil microorganisms break down complex plant tissues into more basic forms and make the nutrients available to grass roots. Finally, growing plants extract the available nutrients from the soil. By free operation of this organic cycle, natural grasslands have some of the most fertile soils on earths.

  • PDF

Studyon the Cultivation Methods of Transplanting the Turf Seedling I. The Effect of Turf Growth with Different Seedling Rates on the Seedling Tray (잔디 育苗 移植 栽培法에 關한 연구 I. 播種箱의 播種密度가 잔디苗 生育에 미치는 影響)

  • 이명선
    • Korean Journal of Plant Resources
    • /
    • v.11 no.3
    • /
    • pp.315-318
    • /
    • 1998
  • This study was carried out to investigate the effect of seedling growth with different seedling rate for machine transplanting with turf. Chosun Zoysia was sown on May 17 with three levels seedling rates. The plant charactersitics were greater in 500g/box plots than the other seedling rates on the seedling box. It ws shown that the 30-40day old seedlings of 1.000 and 2,000g/box seedling plots appeared to be proper methods for Sprigging as the high seedling density. The 70 day old seedling plant with 500g/box were shown to be propoer methods for Sprigging. The seedling periods need to be 60 days for 500g/box plots and 40 days for 1,000 and 2,000g/box plots as forming the mats.

  • PDF

Reproduction rate and stolon production rate after transplantation of grass germplasm

  • Jung, Ji Hyeon;Han, Gyung Deok;Kim, Jaeyoung;Chung, Yong Suk
    • Korean Journal of Agricultural Science
    • /
    • v.48 no.3
    • /
    • pp.465-471
    • /
    • 2021
  • Grass breeding starts with the process of selecting grass with good traits, and this operation consumes a lot of resources. Therefore, there is a need for an efficient screening method. Stolon is a unit for the storage of carbohydrates and vegetative propagation, which enhances grass growth and grass sod. Grass varieties with active production of stolons have excellent traits because they reproduce quickly and have a high density. To select grass with such a trait, the survival rate and the production rate of stolon after transplantation of 72 grass germplasms were investigated. After transplantation, the survival rate ranged from 75% to 100%. The majority of the grass cultivars showed a 100% survival rate. Therefore, the group was divided into two groups: A grass variety showing 100% survival and a grass variety that did not show 100% survival. The grass cultivar group, which showed a 100% survival rate after transplantation, included 61 turf varieties, and the rates of stolon production in these grass varieties ranged from 0 to 100%. In contrast, 10 varieties were included in the grass cultivar group that did not show 100% survival after transplantation. These cultivars had a stolon production rate of 0 to 33%. The results suggest that grass germplasms with a 100% survival rate should be selected.

Investigation of Nutrient Contents at in Creeping Bentgrass, Kentucky Bluegrass, and Zoysiagrass in Early Winter (골프코스에서의 월동 전 크리핑 벤트그래스, 켄터키 블루그래스 및 한국잔디의 부위별 양분 함량)

  • Kim, Young-Sun;Kim, Tack-Soo;Ham, Suon-Kyu;Course Service Team of Bear Creel G.C, Course Service Team of Bear Creel G.C
    • Asian Journal of Turfgrass Science
    • /
    • v.22 no.2
    • /
    • pp.141-148
    • /
    • 2008
  • This study was conducted to investigate nutrient content at shoot and root(contained runner in zoysiagrass) in creeping bentgrass, kentucky bluegrass and zoysiagrass before turfgrass dormancy. The shoot ratio of dry weight in creeping bentgrass, kentucky bluegrass and zoysiagrass was 12%, 27% and 25% and root ratio was 88%, 73% and 75%, respectively. The orders of nutrients contained in turf-grass were N>K>Ca>P>Mg>Na in plant tissues. The proportion of nutrients in tissue of creeping bentgrass, kentucky bluegrass and zoysiagrass was 17%, 28% and 34% in shoot and 83%, 72% and 66% in root, respectively. These results showed that nutrients in turf-grass tissue was contained more than 70% in root before grasses dormancy. In turf grass management, all grasses were required to fertilize sufficiently N, $K_2O$, CaO and $P_2O_5$ before winter.

A Comparative Study on Dry Matter Yield and Quality of Turf Grasses (Turf Grass 초종의 건물수량 및 사료가치 비교연구)

  • 이형석;이인덕;이중해
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.23 no.3
    • /
    • pp.187-192
    • /
    • 2003
  • This study was conducted to investigate dry matter yield and quality of six turf grasses, and thus to apply its result into making mixed species in the mixtures. The six turf grasses were Kentucky bluegrass(Newport), red fescue(Salem), creeping bentgrass(Crenshaw), perennial ryegrass(Palmer Ⅱ), tall fescue(Rebell Jr.) and redtop(Barricuda). This experiment was carried out for 3-years at grassland experimental field of Chungnam National University. The dry matter(DM) yield obtained in tall fescue and redtop was higher than those of the other species(p<0.05). Consideration of crude protein content and dry matter digestibility(DMD), the species of high quality compared to the other species were creeping bentgrass, perennial ryegrass, and Kentucky bluegrass. The crude protein dry matter yield was higher in Kentucky bluegrass and redtop, it was lower in red fescue(p<0.05). On the other hand, digestible dry matter(DDM) yield was higher in tall fescue and redtop, but lower in creeping bentgrass and red fescue(p<0.05). Based on the result mentioned above, therefore, it is suggested that turf grasses such as tall fescue, Kentucky bluegrass and redtop are recommended as species of turf grass which could be used as bottom grasses in mixtures.

An Experimental Study of Surface Materials for Planting of Building Surface by the Radiant Heat Balance Analysis in the Summer (하절기 실험을 통한 건물녹화용 피복재료의 복사수지 해석)

  • Choi, Dong-Ho;Lee, Bu-Yong
    • Journal of the Korean Solar Energy Society
    • /
    • v.30 no.3
    • /
    • pp.71-80
    • /
    • 2010
  • This study carried out to understand the thermal characteristics of various surface material which compose the city through the observation in the summer. To examine passive cooling effect of planting of building, it is arranged four different materials that is natural grass, grass block, concrete slab and artificial grass. The results of this study are as follows; (1) Natural grass and grass block show the lower surface temperature because of the structures of leaf can do more thermal dissipation effectively. (2) There is little surface temperature between artificial grass and concrete. But there is little high surface temperature difference between natural grass and concrete because of latent heat effect. (3) The concrete can play a role of the tropical nights phenomenon as high heat capacity of concrete compare with other materials. (4) It is nearly same color in artificial grass and natural grass but there is large difference between natural grass and artificial grass at albedo. There is different albedo in near infrared ray range. (5) A short wave radiation gives more effect at the globe temperature than long wave radiation. (6) The artificial turf protected the slab surface temperature increase in spite of thin and low albedo materials.

The Activity and Utilization of Urease Inhibitors (요소분해효소 억제물질의 작용과 응용에 관한 연구)

  • 주영규
    • Asian Journal of Turfgrass Science
    • /
    • v.6 no.1
    • /
    • pp.23-28
    • /
    • 1992
  • Urea, the major N source of world agriculture involves a serious urea-N loss through NH$_3$volatilization. Approaches to decrease N loss include using urease inhibitors in view of the environmental protection and the increase of urea-N efficiency. The purpose of laboratory researches was toassess the potential value of urease inhibitors to increase urea-N efficiency in soil and Kentucky blue-grass(Poa Pratensis L.) turf. The activity of urease inhibitors Phenyiphosphorodiamjdate(ppD) and N-(n-butyl) thiophosphoric triamjde(NBPT) measured to break-down ammonia volatilization. The soil and turf used in this project were from the fairway in one of the Korean gof course. The researches were carried out for two weeks to measure the urease activities on urea hydrolysis under four temperatures (10~ 40$^{\circ}C$) and for one week on turfgrass using forced-draft system. Results indicated that Urea-N involves considerable loss through gaseous NH$_3$ by urease activities in plant-soil systems. Urease inhibitors PPD and NBPT have potential value for increasing N use efficiency by reduing NH$_3$ volatilization. NBPT deserves futher evaluation as fertilizer amendment than PPD use of urea in turf industries.

  • PDF

Thermal Environment Characteristics of Permeable Block Pavements for Landscape Construction (조경용 투수성 블록 포장의 열환경 특성)

  • Han Seung-Ho;Ryu Nam-Hyong;Kang Jin-Hyoung
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.34 no.2 s.115
    • /
    • pp.18-25
    • /
    • 2006
  • This study aims to measure and to analyze the thermal environment characteristics of the various permeable pavement materials such as grass pavement (GREEN BLOCK PARK), stone and grass pavement (GREEN BLOCK STEP), stone pavement (GREEN BLOCK MOSAIC) and wood pavement (WOOD BLOCK) under the summer outdoor environment. The thermal environment characteristics measured in the study includes the changes of surface temperature during the day, changes of the temperature on each pavement layer, and long and short wave radiation of each pavement surface. The experimental condition is based on the data on the hottest temperature (August 5, 2005, $34.0^{\circ}C$) of the you. Some of main findings are: 1) The heat environment was worse on the wood pavements than on the stone pavement. This is mainly due to the low albedo of the wood pavements (0.37) while the albedo value of stone pavements is 0.41. Small heat capacity of the wood pavements also contributes to this difference. 2) The heat environment was worse on the stone pavements than on the turf pavements. This was mainly due to the evapotranspiration of the plant growth layer of the turf pavements. 3) The peak surface temperature was the highest on the wood pavements ($56.1^{\circ}C$). The peak surface temperatures on the stone pavements, the stone-grass pavements and the grass pavements were $43.1^{\circ}C,\;40.1^{\circ}C\;and\;37.9^{\circ}C$, respectively. 4) To improve the thermal environments in the urban area, it is recommended to raise the albedo of the pavements by brightening the surface color of the pavement materials. Further studies on the pavement materials and the construction methods which can enhance the continuous evapotranspiration from the pavements surface are needed.

The Effect of SCB(Slurry Compost ion and Biofilter) Liquid Fertilizer on Growth of Creeping Bentgrasss (저농도 SCB액비의 시용이 크리핑벤트그래스의 생육에 미치는 영향)

  • Ham, Suon-Kyu;Kim, Young-Sun;Kim, Tack-Soo;Kim, Ki-Sun;Park, Chi-Ho
    • Asian Journal of Turfgrass Science
    • /
    • v.23 no.1
    • /
    • pp.91-100
    • /
    • 2009
  • In regional nutrient quota system, livestock manure was applied as liquid fertilizer after slurry composting and biofiltration (SCB) process. This study was conducted to evaluate the effect of SCB liquid fertilizer on turfgrass growth in golf course during 6 month period from May to October in 2008. Fertilizer treatment was designed as follows; non-fertilizer (NF), control (CF; compound fertilizer), S-1 (1L SCB${\cdot}m^{-2}$) and S-2 (2L SCB${\cdot}m^{-2}$). Every treatment was arranged in a randomized complete block design with three replications. In creeping bentgrass, turf color index, chlorophyll content, and dry weight were measured. Results were as follows; A seasonal change pattern of turf grass quality in all treatment increased in April $\sim$ June and September $\sim$ October, whereas it decreased in July $\sim$ August. As compared with NF, turf color index of CF, S-1 and S-2 increased by 1.8%, 1.8%, and 3.3%, respectively and chlorophyll content by 13%, 14%, and 20%, respectively. Dry weight of CF, S-1, and S-2 was higher than that of NFl by 7.7%, 18.2%, and 18.1%, respectively. For turf color index, chlorophyll content, and dry weigh, S-2 showed the best effect, followed by S-1 and CF in creeping bentgrass. These results indicated that the SCB application improves turf growth and quality.