• Title/Summary/Keyword: Turbulent hydrogen jet

Search Result 35, Processing Time 0.025 seconds

Liftoff mechanisms in hydrogen turbulent non-premixed jet flames (수소 난류확산화염에서의 부상 메커니즘에 대한 연구)

  • Oh, Jeong-Seog;Kim, Mun-ki;Choi, Yeong-Il;Yoon, Young-Bin
    • 한국연소학회:학술대회논문집
    • /
    • 2007.05a
    • /
    • pp.7-12
    • /
    • 2007
  • To reveal the newly found liftoff height behavior of hydrogen jet, we have experimentally studied the stabilization mechanism of turbulent, lifted jet flames in a non-premixed condition. The objectives of the present research are to report the phenomenon of a liftoff height decreasing as increasing fuel velocity, to analyse the flame structure and behavior of the lifted jet, and to explain the mechanisms of flame stability in hydrogen turbulent non-premixed jet flames. The velocity of hydrogen was varied from 100 to 300m/s and a coaxial air velocity was fixed at 16m/s with a coflow air less than 0.1m/s. For the simultaneous measurement of velocity field and reaction zone. PIV and OH PLIF technique was used with two Nd:Yag lasers and CCD cameras. As results, it has been found that the stabilization of lifted hydrogen diffusion flames is related with a turbulent intensity, which means that combustion occurs where the local flow velocity is valanced with the turbulent flame propagation velocity.

  • PDF

Liftoff Mechanisms in Hydrogen Turbulent Non-premixed Jet Flames (수소 난류확산화염에서의 부상 메커니즘에 대한 연구)

  • Oh, Jeong-Seog;Kim, Mun-Ki;Choi, Yeong-Il;Yoon, Young-Bin
    • Journal of the Korean Society of Combustion
    • /
    • v.12 no.2
    • /
    • pp.26-33
    • /
    • 2007
  • To reveal the newly found liftoff height behavior of hydrogen jet, we have experimentally studied the stabilization mechanism of turbulent, lifted jet flames in a non-premixed condition. The objectives of the present research are to report the phenomenon of a liftoff height decreasing as increasing fuel velocity, to analyse the flame structure and behavior of the lifted jet, and to explain the mechanisms of flame stability in hydrogen turbulent non-premixed jet flames. The velocity of hydrogen was varied from 100 to 300m/s and a coaxial air velocity was fixed at 16m/s with a coflow air less than 0.1m/s. For the simultaneous measurement of velocity field and reaction zone, PIV and OH PLIF technique was used with two Nd:Yag lasers and CCD cameras. As results, it has been found that the stabilization of lifted hydrogen diffusion flames is related with a turbulent intensity, which means that combustion occurs at the point where the local flow velocity is balanced with the turbulent flame propagation velocity.

  • PDF

Flame Structure of a Liftoff Non-Premixed Turbulent Hydrogen Jet with Coaxial Air (부상된 수소 난류확산화염의 화염구조)

  • Oh, Jeong-Seog;Yoon, Young-Bin
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.33 no.9
    • /
    • pp.699-708
    • /
    • 2009
  • To understand hydrogen jet liftoff height, the stabilization mechanism of turbulent lifted jet flames under non-premixed conditions was studied. The objectives were to determine flame stability mechanisms, to analyze coexistence of two different flame structure, and to characterize the lifted jet at the flame stabilization point. Hydrogen flow velocity varied from 100 to 300 m/s. Coaxial air velocity was changed from 12 to 20 m/s. Simultaneous velocity field and reaction zone measurements used, PIV/OH PLIF techniques with Nd:YAG lasers and CCD/ICCD cameras. Liftoff height decreased with the increase of fuel velocity. The flame stabilized in a lower velocity region next to the faster fuel jet due to the mixing effects of the coaxial air flow. The flame stabilization was related to turbulent intensity and strain rate assuming that combustion occurs where local flow velocity and turbulent flame propagation velocity are balanced. At the flame base, two different flame structures were found that was the partial premixed flames and premixed flame.

Study of Hydrogen Turbulent Non-premixed Flame Stabilization in Coaxial Air Flow (동축공기 수소 난류확산화염에서의 화염안정성에 대한 실험적 연구)

  • Oh, Jeong-Seog;Kim, Mun-Ki;Choi, Yeong-Il;Yoon, Young-Bin
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.32 no.3
    • /
    • pp.190-197
    • /
    • 2008
  • It was experimentally studied that the stabilization mechanism of turbulent, lifted jet flames in a non-premixed condition to reveal the newly found liftoff height behavior of hydrogen jet. The objectives are to report the phenomenon of a liftoff height decreasing as increasing fuel velocity, to analyse the flame structure and behavior of the lifted jet, and to explain the mechanisms of flame stability in hydrogen turbulent non-premixed jet flames. The hydrogen jet velocity was changed from 100 to 300m/s and a coaxial air velocity was fixed at 16m/s with a coflow air less than 0.1m/s. For the simultaneous measurement of velocity field and reaction zone, PIV and OH PLIF technique was used with two Nd:Yag lasers and CCD cameras. As a result, it was found that the stabilization of lifted hydrogen diffusion flames is correlated with a turbulent intensity and Karlovitz number.

Investigation of liftoff mechanisms in hydrogen turbulent non-premixed jet flames (수소 난류확산화염에서의 부상 메커니즘에 대한 연구)

  • Oh, Jeong-Seog;Kim, Mun-Ki;Choi, Yeong-Il;Yoon, Young-Bin
    • 한국가시화정보학회:학술대회논문집
    • /
    • 2006.12a
    • /
    • pp.135-140
    • /
    • 2006
  • The stabilization mechanism of turbulent, lifted jet flames in a non-premixed condition has been studied experimentally. The objectives are to explain the phenomenon of a liftoff height decreasing as increasing fuel velocity and to reveal the mechanisms of flame stability Hydrogen was varied from 100 to 300 m/s and a coaxial air was fixed at 16 m/s with a coflow air less than 0.1 m/s. The technique of PIV and OH PLIF was used simultaneously with CCD and ICCD cameras. It was found that the liftoff height of the jet decreased with an increased fuel jet exit velocity. The leading edge at the flame base was moving along the stoichiometric line. Finally we confirmed that the stabilization of lifted hydrogen diffusion flames is related with a turbulent intensity, which means combustion is occurred where the local flow velocity is equal to the turbulent flame propagation velocity.

  • PDF

The Effect of N2 Dilution on the Flame Stabilization in a Non-Premixed Turbulent H2 Jet with Coaxial Air (질소 희석이 수소 난류확산화염의 화염안정성에 미치는 영향)

  • Oh, Jeong-Seog;Yoon, Young-Bin
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.33 no.7
    • /
    • pp.477-485
    • /
    • 2009
  • The study of nitrogen dilution effect on the flame stability was experimentally investigated in a non-premixed turbulent lifted hydrogen jet with coaxial air. Hydrogen gas was used as a fuel and coaxial air was used to make flame liftoff. Each of hydrogen and air were injected through axisymetric inner and outer nozzles ($d_F=3.65\;mm$ and $d_A=14.1\;mm$). And both fuel jet and coaxial air velocity were fixed as $u_F=200\;m/s$ and $u_A=16\;m/s$, while the mole fraction of nitrogen diluents gas was varied from 0.0 to 0.2 with 0.1 step. For the analysis of flame structure and the flame stabilization mechanism, the simultaneous measurement of PIV/OH PLIF laser diagnostics had been performed. The stabilization point was selected in the most upstream region of the flame base and defined as the point where the turbulent flame propagation velocity was equal to the axial component of local flow velocity. We found that the turbulent flame propagation velocity increased with the decrease of nitrogen mole fraction. We concluded that the turbulent flame propagation velocity was expressed as a function of turbulent intensity and axial strain rate, even though nitrogen diluents mole fraction was changed.

Theoretical Study on the Behavior of Momentum-controlled Buoyant Jet and Flame of Hydrogen (운동량에 의해 제어되는 수소 부양 제트 및 화염의 거동에 관한 이론적 해석)

  • Yang, Won;Won, Sang-Hee;Kim, Min-Kook;Chung, Suk-Ho;Kim, Jong-Soo
    • Journal of the Korean Society of Combustion
    • /
    • v.10 no.3
    • /
    • pp.34-41
    • /
    • 2005
  • Hydrogen safety is one of the key technical issue with growing attention on utilization of hydrogen energy. This study is aimed to predict behavior of momentum-controlling buoyant jet and flame caused by hydrogen leakage from a high pressured tank. Approximate solutions were derived for the case of turbulent buoyant jet and diffusion flame in still air. In case of hydrogen jet with low Froude number (100-4000), computed jet trajectories were compared with experimental data and showed good agreement with them. Jet and flame trajectories and flame length of hydrogen are predicted and compared with the buoyant flame of propane. The results well show that buoyancy is dominant in the range of low Froude number, while initial momentum is dominant in the range of high Froude number. That effect is more distinct for hydrogen flame than the case of propane.

  • PDF

Theoretical Study on the Behavior of Momentum-controlled Buoyant Jet and Flame of Hydrogen (운동량에 의해 제어되는 수소 부양 제트 및 화염의 거동에 관한 이론적 해석)

  • Yang, Won;Kim, Jong-Soo;Won, Sang-Hee;Kim, Min-Kook;Chung, Suk-Ho
    • 한국연소학회:학술대회논문집
    • /
    • 2005.10a
    • /
    • pp.207-214
    • /
    • 2005
  • Hydrogen safety is one of the key technical issue with growing attention on utilization of hydrogen energy. This study is aimed to predict behavior of momentum-controlling buoyant jet and flame caused by hydrogen leakage from a high pressured tank. Approximate solutions were derived for the case of turbulent buoyant jet and diffusion flame in still air. In case of hydrogen jet with low Froude number (100-4000), computed jet trajectories were compared with experimental data and showed good agreement with them. Jet and flame trajectories and flame length of hydrogen are predicted and compared with the buoyant flame of propane. The results well show that buoyancy is dominant in the range of low Froude number, while initial momentum is dominant in the range of high Froude number. That effect is more distinct for hydrogen flame than the case of propane.

  • PDF

Flame Length Scaling in a Non-premixed Turbulent Diluted Hydrogen Jet with Coaxial Air (희석된 동축공기 수소 난류확산화염의 화염 길이 스케일링)

  • Hwang, Jeong-Jae;Oh, Jeong-Seog;Yoon, Young-Bin
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.242-245
    • /
    • 2009
  • The effect of fuel composition on flame length was studied in a non-premixed turbulent diluted hydrogen jet with coaxial air. The observed flame length was expressed as a function of the ratio of coaxial air to fuel jet velocity and compared with a theoretical prediction based on the velocity ratio. Four cases of fuel mixed by volume were determined. In the present study, we derived a scaling correlation for predicting the flame length in a simple jet with coaxial air using the effective jet diameter in the near-field concept. The experimental results showed that visible flame length had a good relation with the theoretical prediction. The scaling analysis is also valid for diluted hydrogen jet flames with varied fuel composition.

  • PDF

Flame Length Scaling and Structure in Turbulent Hydrogen Non-Premixed Jet Flames with Coaxial Air (동축공기 수소 확산화염의 구조 및 화염길이 스케일링)

  • Yun, Sang-Wook;Oh, Jeong-Seog;Kim, Mun-Ki;Yoon, Young-Bin
    • 한국연소학회:학술대회논문집
    • /
    • 2006.04a
    • /
    • pp.105-110
    • /
    • 2006
  • Many previous works have been performed to provide correlations of flame length, theoretically and experimentally. Most of these results studied were conducted in vertical turbulent flame with no coaxial air condition. The present study analyzes the flame length scaling with coaxial air. In turbulent hydrogen non-premixed jet flames with coaxial air, flame length scaling theoretically proposed so far has been related with the concept of a far-field equivalent source. At high coaxial air to fuel velocity ratio, $U_A/U_F$, however, this scaling theory has some difference with experimental flame length data. This difference is understood to be due to the fact that the theory is based on far-field notion, while the effect of coaxial air on jet flame occurs in the region near the nozzle exit. Therefore, we define effective jet density $P_{eff}$ involving the concept of near-field so that effective jet diameter can be extended to the near-field region. In this condition, we modify the correlation and compare with experimental data.

  • PDF