• Title/Summary/Keyword: Turbulent heat transfer

Search Result 509, Processing Time 0.023 seconds

Analysis of Turbulent Flow and Heat Transfer in a Square Duct with a 18$0^{\circ}C$ Bend (4角斷面 의 1800曲管 에서의 亂流流動 과 熱傳達解析)

  • ;B.E. Launder
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.9 no.1
    • /
    • pp.91-108
    • /
    • 1985
  • Turbulent flow and heat transfer in the 180.deg. bend with square cross section were analizied numerically by using k-.epsilon. 2 eqatiuon model with applications of QUICK scheme and PSL method. Results with PSL method show the more agreements with experimental data than those with wall function. However these results also show that it is very difficult to predict the 3-dimensional turbulent flow with strong secondary flow accuratly by standard k-.epsilon. equation model, and therefore it is necessary to introduce the higher order turbulent model or to correct the standard k-.epsilon. model for the more accurate predictions of these types of flow.

The Effect of Main Stream Turbulence on the Heat Transfer Around a Cylinder Surface (주 유동의 난류특성이 원통 표면에서의 열전달에 미치는 영향에 관한 연구 - 수치 해석적 고찰 -)

  • Park, J.H.;Choi, Y.K.;Ryou, H.S.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.3 no.3
    • /
    • pp.186-196
    • /
    • 1991
  • Numerical analysis has been performed to investigate the effects of the turbulence intensity and Prandtl number on the local heat transfer around a circular cylinder in crossflow. The governing equations were reformulated in a non-orthogonal coordinate system with Cartesian velocity components and discretised by the finite volume method with a non-staggered variable arrangement. For laminar flow, the calculations were performed for the Reynolds numbers 26 and 200. The results showed good agreement with the experimental results. For turbulent flow of the Reynolds number $1{\times}10^5$ and $2{\times}10^6$, the results showed that with an increase in the turbulent intensity in the main stream, the local Nusselt number increases in the front region of the circular cylinder. But the effect of turbulent intensity on the local Nusselt number diminishes in the wake region. The influence of Prandtl numbers show similar trend to that of turbulent intensity.

  • PDF

Assessment of two-equation turbulent models in FLUENT for a turbulent heated pipe flow (열유속이 있는 난류 원관 유동에의 FLUENT의 2방정식 난류모델의 적용성 판단)

  • Moon C. M.;Baek S. G.;Park S. O.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2003.08a
    • /
    • pp.158-163
    • /
    • 2003
  • This paper assesses the two-equation turbulence models available in a commercial code, FLUENT, for heat transfer in a turbulent heated pipe flow. In case of flow under $Re_D=10,000$, Standard $\kappa-\epsilon$ and Realizable $\kappa-\epsilon$ models overpredict the Nusselt number about $20\%$ compared with the experimental correlation, and RNG $\kappa-\epsilon$ model overpredicts about $30\%$ when the two-layer zonal method is employed. When wall function method is adopted, all $\kappa-\epsilon$ models show better predictions. Standard $\kappa-\omega$ and SST $\kappa-\omega$ models have the dependency on the first grid point ($0.3). As Reynolds number becomes high, the predictions of all $\kappa-\epsilon$ and $\kappa-\omega$ models are in a good agreement with the experimental correlation.

  • PDF

DEVELOPMENT OF CFD PROGRAM FOR THE CONJUGATE HEAT TRANSFER ANALYSIS OF PMSM ELECTRIC MOTOR (PMSM 전동기 모터의 복합 열전달 해석을 위한 CFD 프로그램 개발)

  • Lee, Jung-Hee;Choi, Jong-Rak;Hur, Nahm-Keon;Kim, Joo-Han;Kim, Young-Kyoun
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.488-493
    • /
    • 2011
  • The object of this study is to develope the program for analyzing the fluid flow and heat transfer of PMSM electric motor. The program will be mainly used for inexperienced users of CFD analysis. So it has to be performed using the geometry data and the heat source of each part only. Interface program for converting the given data to the instruction of pre-processor is developed. The conjugate heat transfer between a flow passage of the motor and inner parts consisting of rotor and stator is regarded. In order to reduce the computational time and memory storage, cyclic boundary condition is applied. For the numerical simulation, MRF(Multi-Reference Frame) method is used to consider rotating operation of the rotor and heat source is applied to the copper, wire, and magnetic parts in the motor. On the screen of computer, the users can show the velocity distributions and the contours such as pressure, turbulent kinetic energy, turbulent dissipation rate and temperature.

  • PDF

Numerical analysis of turbulent flows in the helically coiled pipes of heat transfer (열교환기의 나선형 관내 난류유동 수치해석)

  • Kwag, Seung-Hyun
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.37 no.8
    • /
    • pp.905-910
    • /
    • 2013
  • The flow analysis has been made by applying the turbulent models in the helically coiled tubes of heat transfer. The k-${\varepsilon}$ and Spalart-Allmaras turbulent models are used in which the structured grid is applied for the simulation. The velocity vector, the pressure contour, the change of residuals along the iteration number and the friction factors are simulated by solving the Navier-Stokes equations to make clear the Reynolds number effect. The helical tube increases the centrifugal forces by which the wall shear stress become larger on the outer side of the tube. The centrifugal force makes the heat transfer rate locally larger due to the increase of the flow energy, which finds out the close relationship between the pressure drop and friction factor in the internal flow. The present numerical results are compared with others, for example, in the value of friction factor for validation.

Fluid flow and heat transfer around tubes arranged in line (일행관군에서의 유동특성과 열전달현상에 관한 연구)

  • 부정숙;조석호;정규하
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.14 no.6
    • /
    • pp.1603-1612
    • /
    • 1990
  • An experimental study is conducted to investigate the fluid flow and heat transfer around tubes arranged in line. All measurements are performed at Reynolds number 1.58*10$^{4}$ with varing tube spacings from the small pitch ratio(L/D=1.25) to the large pitch ratio(L/D=3.0). Mean static pressures and mean temperatures of the surface of tubes and mean velocities and turbulent intensities in tube banks are measured. The flow patterns and the characteristics of heat transfer are strongly influenced by the tube spacings. Especially, in the case of very small spacings(L/D=1.25), the flow between neighboring tubes becomes very stagnant and the heat transfer decreases. In the case of each tube spacing, the characteristics of heat transfer around the 3rd, the 4th and the 5th tubes are nearly similar to one another, because the flow around tubes becomes stable at the 3rd tubes. The local heat transfer has the peak value near the reattachment point which has the peak value of pressure, but the local heat transfer for the 2nd tube of L/D=1.25 without reattaching has the peak value at .theta.=75.deg.. For each pitch ratio, the mean heat transfer increases gradually toward the downstream tubes, because the oncoming flow through neighboring tubes comes closer to the forward and rear surfaces of the tube and the turbulent intensity becomes larger in the downstream direction.

Experimental Study on Heat Transfer Characteristics of Swirling Impinging Jet (스월 충돌제트의 열전달 특성에 관한 실험적 연굴)

  • Jo, Jeong-Won;Lee, Sang-Jun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.10
    • /
    • pp.1346-1354
    • /
    • 2001
  • The heat transfer characteristics off swirling air jet impinging on a heated flat plate have been investigated experimentally. The main object is to enhance the heat transfer rate by increasing turbulence intensity of impinging jet with a specially designed swirl generator. The mean velocity and turbulent intensity profiles of swirling jet were measured using a hot-wire anemomety. The temperature distribution on the heated flat surface was measured with thermocouples. As a result the swirl effect on the local heat transfer rate on the impinging plate is confined mainly in the small nozzle-to-plate spacings such as L/D<3 at the stagnation region. For small nozzle-to-plate spacings, the local heat transfer in the stagnation region is enhanced from the increased turbulence intensity due to swirl motion, compared with the conventional axisymmetric impinging jet without swirl. For example, the local Nusselt number of swirling jet with swirl number Sw=0.75 and Sw=1 is about 9.7-76% higher than that of conventional impinging jet at the radial location of R/D=0.5. With the increase of the nozzle-to-plate distance, the stagnation heat transfer rate is decreased due to the diminishing axial momentum of the swirling jet. However, the swirling impinging jet for all nozzle-to-plate spacings tested in this study does not enhance the average heat transfer rate.

Heat Transfer in the Combustion Chamber for the Compact Hot-Water Boiler (콤팩트 온수 보일러 연소실의 열전달 특성)

  • Cho, Jung-Hwan;Seo, Tae-Beom;Kim, Wook-Jung;Kim, Chang-Ju
    • Proceedings of the KSME Conference
    • /
    • 2001.06d
    • /
    • pp.459-464
    • /
    • 2001
  • A mathematical model has been developed to describe the turbulent and reversed flow with convective heat transfer in a cylindrical combustion chamber. By using the mathematical model for high temperature flow enables the trends in overall heat transfer rates to be predicted. The model was applied to the design of the combustion chamber. The influences of the size of air inlet and inlet velocity were investigated for process optimization. Through modelling work it is found that the heat transfer rate to the chamber wall may be enhanced by adjusting the air flow and heat transfer pattern through selecting the air inlet condition. Internal plate has less influence to the heat transfer characteristics.

  • PDF

Effects of Swirl Flow Generated by Twisted Tape on Heat Transfer and Friction Factor in a Square Duct (꼬임식 테이프가 설치된 사각 덕트에서 스월유동이 미치는 열전달과 마찰계수)

  • Kang, Ho-Keun;Ary, Bachtiar-Krishna-Putra;Ahn, Soo-Whan
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03b
    • /
    • pp.117-120
    • /
    • 2008
  • Numerical simulations and experiment of a hydrodynamic and thermally developed turbulent flow through square ducts (3.0 ${\times}$ 3.0 cm) with twisted tape inserts and with twisted tape inserts plus interrupted ribs are conducted to investigate regionally averaged heat transfer and friction factors. Turbulent swirl flows having Reynolds numbers ranging from 8,900 to 29,000, a rib height-to-channel hydraulic diameter(e/D$_h$) of 0.067, and a length-to-hydraulic diameter(L/D$_h$) of 30, are considered. The square ribs are arranged to follow the trace of the twisted tape and along the flow direction defined as axial interrupted ribs. The twisted tape has 0.1 mm thick carbon steel sheet with diameter of 2.8 cm, length of 90 cm, and 2.5 turns. Each wall is composed of isolated aluminum sections, and two cases of surface heating are set. The results show that uneven surface heating enhances the heat transfer coefficient over uniform heating conditions, and square ducts with twisted tape inserts plus interrupted ribs produces the best overall transfer performance.

  • PDF

Thermal analysis inside a small chamber including radiation (미소 챔버 내 복사열전달을 수반한 열유동 해석)

  • Lee, Hyung-Sik;Do, Gi-Jung;Lee, Sang-Ho
    • Proceedings of the SAREK Conference
    • /
    • 2006.06a
    • /
    • pp.194-198
    • /
    • 2006
  • In this study, numerical modeling was performed to analyze air flow including radiation heat transfer inside a small chamber. Characteristics of heat transfer between source plate and target through glass are investigated for various surface temperature of heat source plate with buoyancy effect due to gravity force. Conduction heat transfer through the glass is considered and heat source plate is assumed to be a black body. Target surface temperature is largely affected by the radiation heat transfer. It can also be seen that as the source temperature increases target surface is dominated by radiation rather than convective heat transfer by air.

  • PDF