• 제목/요약/키워드: Turbulent Premixed flames

검색결과 110건 처리시간 0.021초

수소 난류확산화염에서의 부상 메커니즘에 대한 연구 (Liftoff Mechanisms in Hydrogen Turbulent Non-premixed Jet Flames)

  • 오정석;김문기;최영일;윤영빈
    • 한국연소학회지
    • /
    • 제12권2호
    • /
    • pp.26-33
    • /
    • 2007
  • To reveal the newly found liftoff height behavior of hydrogen jet, we have experimentally studied the stabilization mechanism of turbulent, lifted jet flames in a non-premixed condition. The objectives of the present research are to report the phenomenon of a liftoff height decreasing as increasing fuel velocity, to analyse the flame structure and behavior of the lifted jet, and to explain the mechanisms of flame stability in hydrogen turbulent non-premixed jet flames. The velocity of hydrogen was varied from 100 to 300m/s and a coaxial air velocity was fixed at 16m/s with a coflow air less than 0.1m/s. For the simultaneous measurement of velocity field and reaction zone, PIV and OH PLIF technique was used with two Nd:Yag lasers and CCD cameras. As results, it has been found that the stabilization of lifted hydrogen diffusion flames is related with a turbulent intensity, which means that combustion occurs at the point where the local flow velocity is balanced with the turbulent flame propagation velocity.

  • PDF

난류 Pilot 비예혼합 화염장의 상세구조 해석 (Numerical Investigations of Turbulent Piloted Non-Premixed Flames)

  • 이정원;전상태;김용모
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2014년도 제49회 KOSCO SYMPOSIUM 초록집
    • /
    • pp.185-186
    • /
    • 2014
  • The multi-environment probability density function model has been applied to simulate the turbulent stratified premixed flames. The direct quadrature method of moments (DQMOM) has been adopted to solve the transport PDF equation due to its computational efficiency and robustness. The IEM mixing model is employed to represent the mixing process and the chemical mechanism is based on Gri 3.0 mechanism. Numerical results obtained in this study are precisely compared with experimental data in terms of unconditional and conditional means for scalar fields and velocity fields.

  • PDF

난류 부분 예혼합 화염장에 대한 수치 모델링 (Numerical Modeling for Turbulent Partially Premixed Flames)

  • 김후중;김용모;안국영
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 제26회 KOSCO SYMPOSIUM 논문집
    • /
    • pp.191-194
    • /
    • 2003
  • The present study is focused on the subgrid scale combustion model in context with a Large Eddy Simulation. In order to deal with detailed chemical kinetic, the level-set method based on a flamelet model is addressed. In this model, the flame front is treated as an interface, represented by an iso-surface of a scalar field G. This iso-surface is convected by the velocity field and its filtered quantities are include the turbulent burning velocity, which is to be modelled. For modelling the turbulent burning velocity, an equation for the length-scale of the sub-filter flame front fluctuations was developed. The formulations and issues for the turbulent premixed and partially premixed flames are addressed in detail.

  • PDF

On the Large Eddy Simulation of High Prandtl Number Scalar Transport Using Dynamic Subgrid-Scale Model

  • Na, Yang
    • Journal of Mechanical Science and Technology
    • /
    • 제18권1호
    • /
    • pp.173-182
    • /
    • 2004
  • The present study has focused on numerical investigation on the flame structure, flame lift-off and stabilization in the partially premixed turbulent lifted jet flames. Since the lifted jet flames have the partially premixed nature in the flow region between nozzle exit and flame base, level set approach is applied to simulate the partially premixed turbulent lifted jet flames for various fuel jet velocities and co-flow velocities. The flame stabilization mechanism and the flame structure near flame base are presented in detail. The predicted lift-off heights are compared with the measured ones.

예혼합 난류화염구조에 미치는 레이놀즈 수와 담퀠러 수의 영향에 관한 연구 (A Study on the Effects of Reynolds Number and Damkohler Number in the Structure of Premixed Turbulent Flames)

  • 김준효;안수길
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제19권4호
    • /
    • pp.34-41
    • /
    • 1995
  • The structure of premixed tubulent flames in a constant-volume vessel was investigated using a schlieren method and microprobe method. The schlieren method was used to observe the flame structure qualitatively. The microprobe method, which detects a flamelet by detecting its flame potential signal, was used to investigate the deeper flame structure behind the flame front. The flame potential signal having one to six peaks was obtained in the case of turbulent flames, each of them being regarede as a flamelet existing in the flame zone. Based on this consideration, the flame propagation speed, the thickness of the flame zone, the number of flamelets and the separation distance between adjacent flamelets in the flame zone were measured. Moreover, the thickness of flamelet which could not be attempted in the conventional electrostatic probe method was also investigated. The experimental results of this work suggest the existence of "reactant islands" in the reaction zone, and show that the averaged number of flamelets increases with an increase in the turbulence intensity and/or a decrease in the Damkohler number. The mean thickness of flamelet in the case of turbulent flames was found to be about two times compared to laminar values.ar values.

  • PDF

정체 유동장에 떠있는 난류 예혼합 화염의 일차 모멘트 닫힘 모사 (First Moment Closure Simulation of Floating Turbulent Premixed Flames in Stagnation Flows)

  • 이은주;허강열
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2000년도 제20회 KOSCO SYMPOSIUM 논문집
    • /
    • pp.122-132
    • /
    • 2000
  • Computational fluid dynamic simulation is performed for the floating turbulent premixed flames stabilized in stagnation flows of Cho et al. [1] and Cheng and Shepherd [2]. They are both in the wrinkled flamelet regime far from the extinction limit with $u'/S^{0}_{L}$ less than unity. The turbulent flux is given in the first moment closure as a sum of the classical gradient flux due to turbulent motions and the countergradient flux due to thermal expansion. The parameter $N_{B}'s$ are greater than unity with the countergradient flux dominant over the gradient flux. The countergradient flux is assumed to be zero in $\bar{c}<0.05$. The flame surface density is modeled as a symmetric parabolic function with respect to $\bar{c}$. The product of the maximum flame surface density and the mean stretch factor is considered as a tuning constant to match the flame location. Good agreement is achieved with the measured $\tilde{w}$ and $\bar{c}$ profiles along the axis in both flames.

  • PDF

동축류 제트에서 초기 온도 변화에 따른 메탄 난류 부상화염 특성 (Characteristics of Methane Turbulent Lifted Flames in Coflow Jets with Initial Temperature Variation)

  • 최병철;정석호
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회B
    • /
    • pp.2372-2377
    • /
    • 2007
  • Characteristics of turbulent lifted flames in coflow jets with the varying initial temperature have recently been investigated about only propane case diluted by nitrogen. The investigation has firstly improved a premixed flame model and a large scale mixing model among competing theories on the stabilization mechanism of turbulent flame to be suitable for a high temperature condition. In this research, about methane with good availability to apply for a practical combustor as clean fuel, its characteristics of turbulent nonpremixed flame have been studied experimentally. The results have shown an effectiveness of the premixed flame model and the large scale mixing model considered initial temperature variation. Additionally, considering the axial distance where the mean fuel concentration falls below the stoichiometric level along the center line of the jet according to diluting nitrogen, the premixed flame model have more accurately been improved.

  • PDF

부상된 수소 난류확산화염의 화염구조 (Flame Structure of a Liftoff Non-Premixed Turbulent Hydrogen Jet with Coaxial Air)

  • 오정석;윤영빈
    • 대한기계학회논문집B
    • /
    • 제33권9호
    • /
    • pp.699-708
    • /
    • 2009
  • To understand hydrogen jet liftoff height, the stabilization mechanism of turbulent lifted jet flames under non-premixed conditions was studied. The objectives were to determine flame stability mechanisms, to analyze coexistence of two different flame structure, and to characterize the lifted jet at the flame stabilization point. Hydrogen flow velocity varied from 100 to 300 m/s. Coaxial air velocity was changed from 12 to 20 m/s. Simultaneous velocity field and reaction zone measurements used, PIV/OH PLIF techniques with Nd:YAG lasers and CCD/ICCD cameras. Liftoff height decreased with the increase of fuel velocity. The flame stabilized in a lower velocity region next to the faster fuel jet due to the mixing effects of the coaxial air flow. The flame stabilization was related to turbulent intensity and strain rate assuming that combustion occurs where local flow velocity and turbulent flame propagation velocity are balanced. At the flame base, two different flame structures were found that was the partial premixed flames and premixed flame.

층류화염편 모델을 이용한 난류 비예혼합 화염장 해석 (Flamelet Modeling of Turbulent Nonpremixed Flames)

  • 김용모
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2000년도 제21회 KOSCO SYMPOSIUM 논문집
    • /
    • pp.9-16
    • /
    • 2000
  • The flamelet concept has been widely applied to numerically simulate complex phenomena occurred in nonpremixed turbulent flames last two decades, and recently broadened successfully the applicable capabilities to various combustion problems from simple laboratory flames to gas turbine engine, diesel spray combustion and partially premixed flames. The paper is focused on brief review of recently noticeable work related to flamelet modeling, which includes Lagrangian flamelet approach, RIF concept as well as steady flamelet approach. The limitation of steady flamelet assumption, the effect of transient behavior of flamelets, and the effect of spray vaporization on PDF model have been discussed.

  • PDF

화상처리기법에 의한 예혼합 난류전파화염의 구조해석 (The Structural Analysis of Premixed Turbulent Propagating Flames Utilizing the Image Process Technique)

  • 라진홍
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제23권4호
    • /
    • pp.593-600
    • /
    • 1999
  • The structure of premixed turbulent flames in constant volume vessel was investigated by using a laser tomography. The flame structure was visualized by passing a laser sheet with 0.2mm thick and 2 cm wide through the turbulent flames to obtain their 2-D images. From the obtained images islands of reactants as well as of products were found at least in the 2-D images when the turbu-lence intensity was above 0.4m/s. Moreover in order to obtain the characteristic flamelet thickness the light intensities of them were digitized and processed into three colors incorporating two appro-priate threshold values in the image analysis. As the result the averaged value of charactertistic flamelet thickness was found to be about two times compared to laminar one.

  • PDF