• Title/Summary/Keyword: Turbulent Premixed Burner

Search Result 31, Processing Time 0.019 seconds

An experimental study on characteristics of mixture turbulence and flame scale (미연혼합기의 난류특성과 화염 스케일에 관한 실험적 연구)

  • Choe, Byeong-Ryun;Jang, In-Gap;Choe, Gyeong-Min
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.20 no.3
    • /
    • pp.1040-1049
    • /
    • 1996
  • The high loading combustion is accomplished by making the turbulent intensity strong and the scale small in the premixed combustor. The Da-mkoler number, which is decreased by short turbulent characteristic time or by long chemical reaction time, can make the distributed reaction flame. So we developed a doubled jet burner for high loading combustion. The doubled jet burner was designed to make the scale of the flame small by the effect of impingement and increasing shear stress with doubled jet. We investigated the turbulence characteristics of unburned mixture and visualized several flames with the typical schlieren photography. Then we studied the influence of several factors that related the scale of flame. Consequently, the doubled jet burner can make the eddy very small. And we can obtain the detail information of the flame scale through ADSF(the Average Distance between Successive Fringes) in the micro- schlieren photography. The ADSF is not a exact flame scale, but it has qualitative trend with increasing turbulent intensity. The ADSF is diminished remarkably with increasing turbulent intensity. The reason is that strong turbulent intensity makes the flame zone thick and flamelets numerous. We can confirm this fact by the signal analysis of ion currents.

The Flame Stability and the Emission Characteristics of Turbulent Premixed Flat Burner (난류예혼합 플랫버너의 화염 안정성 및 배출가스 특성)

  • Lee, Y.H.;Lee, J.S.;Lee, D.H.
    • Journal of the Korean Institute of Gas
    • /
    • v.11 no.1 s.34
    • /
    • pp.1-8
    • /
    • 2007
  • The purpose of this study is to conduct a survey of the flame stability range and the emission characteristics for the optimum design of turbulent premixed flat burner. For that, the flame stability range was selected by the direct photography of the flame. And the mean temperature and CO, HC, $CO_{2}\;and\;O_{2}$ concentration distributions by changing the excess air ratio were measured. As results of this study, the flame stability range turned out to be getting narrower as fuel flow was increased. The blue flame mode was more excellent than any other flame modes in the emission characteristics by excess air ratio change. And the emission characteristics by fuel flow change were best at fuel flow 1l/min. Also, we found combustion noise during experiment of flame stability range. It had nothing do with excess air ratio range.

  • PDF

Development of a Hybrid/Dual Swirl Jet Combustor for a Micro-Gas Turbine (Part II: Numerical Analysis on Isothermal Flow Structure) (마이크로 가스터빈을 위한 하이브리드/이중 선회제트 연소기의 개발 (Part II: 비반응 유동구조에 관한 수치해석))

  • Mun, Sun-Yeo;Hwang, Hae-Joo;Hwang, Cheol-Hong;Lee, Kee-Man
    • 한국연소학회:학술대회논문집
    • /
    • 2012.04a
    • /
    • pp.201-202
    • /
    • 2012
  • The isothermal flow structure and mixing characteristics of a hybrid/dual swirl jet combustor for micro-gas turbine were numerically investigated. Location of pilot nozzle, angle and direction of swirl vane were varied as main parameters with constant fuel flow rates for each nozzle. As a result, the variation in location of pilot nozzle resulted in significant change in turbulent flow field near burner exit, in particular, center toroidal recirculation zone (CTRZ) as well as turbulent intensity, and thus flame stability and emission characteristics might be significantly changed. The swirl angle of $45^{\circ}$ provided similar recirculating flow patterns in a wide range of equivalence ratio (0.5~1.0). Compared to the co-swirl flow, the counter-swirl flow leaded to the reduction in CTRZ and fuel-air mixing near the burner exit and a weak interaction between the pilot partially premixed flame and the lean premixed flame. With the comparison of experimental results, it was confirmed that the case of co-swirl flow and swirl $angle=45^{\circ}$ would provided an optimized combustor performance in terms of flame stability and pollutant emissions.

  • PDF

LES Studies on the Characteristics of Turbulent Premixed Flame with the Configurations of Burner Exit (버너 출구의 형상변화에 따른 난류 예혼합 화염의 특성에 관한 LES 연구)

  • Hwang, Cheol-Hong;Lee, Chang-Eon
    • 한국연소학회:학술대회논문집
    • /
    • 2006.04a
    • /
    • pp.96-104
    • /
    • 2006
  • In the present paper, the effects of combustion instability on flow structure and flame dynamic with the configurations of burner exit in a model gas turbine combustor are investigated using large eddy simulation(LES). A G-equation flamelet model is employed to simulate the unsteady flame behavior. As a result of mean flow field, the change of divergent half angle(${\alpha}$) at burner exit results in variations in the size and shape of the central toroidal recirculation(CTRZ) as well as flame length by changing corner recirculation zone(CRZ). The case of ${\alpha}=45^{\circ}$ show smaller size and upstream location of CTRZ than that of $90^{\circ}$ and $30^{\circ}$ by the development of higher swirl velocity. The flame length in the case of ${\alpha}=45^{\circ}$ is the most shortest, while that in the case of ${\alpha}=30^{\circ}$ is the longest by the decrease of effective reactive area with the absence of CRZ. Through the analysis of pressure fluctuation, it is identified that the case of ${\alpha}=45^{\circ}$ shows the most largest damping effect of pressure oscillation in all configurations and brings in the noise reduction of 2.97dB, comparing with that of ${\alpha}=30^{\circ}$ having the largest pressure oscillation. These reasons are discussed in detail through the analysis of unsteady phenomena about recirculation zone and flame surface. Finally the effects of flame-acoustic interaction are evaluated using local Rayleigh parameter.

  • PDF

Extinction of Non-premixed methane Flame in Twin-Jet Counterflow (Twin-Jet 대향류에서 메탄 비예혼합화염의 소염 특성)

  • Noh, T.G.;Yang, S.Y.;Ryu, S.K.;Chung, S.H.
    • 한국연소학회:학술대회논문집
    • /
    • 2003.12a
    • /
    • pp.195-200
    • /
    • 2003
  • A two-dimensional "twin-jet counterflow" burner has been designed for the better understanding of the stability of turbulent flames. This flow system enables one to systematically investigate various effects on non-premixed flames, including the effects of curvature, negative strain, and non-premixed flame interactions. The objective of this study is comparing characteristics of extinction of non-premixed methane flames with that of non-premixed propane flames investigated previously. The extinction limit of non-premixed methane and propane flames can be extended compare to that for the conventional counterflow non-premixed flame because of the existence of petal shaped flame and have same structure. The hysteresis in transition between the petal shaped flame and the curved two-wing flames could be observed. We could find differences between non-premixed methane flame and non-premixe propane flame such as the position of one wing extinction and the regime of one wing extinction.

  • PDF

Effects of Premixed Flame on Turbulence Properties in a Pilot Flame Stabilized Jet Burner (파일럿 안정화 제트버너의 예혼합 화염이 미연가스 영역 난류특성에 미치는 영향)

  • Lee, Dae Hoon;Kwon, Sejin
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.23 no.9
    • /
    • pp.1172-1177
    • /
    • 1999
  • Comparisons of measured turbulence properties in the unburned gas region of turbulent premixed flame stabilized by pilot flame, in cases of combusting and non-combusting flow conditions, are presented. Methane-air premixed jet at fuel equivalence ratio of 0.6 and 1.0 and Reynolds number of 7,000 was diagnosed using two-color laser velocimeter to obtain turbulence statistics. Same set of measurements was repeated at 21 locations within the unburned gas region of both combusting and non-combusting conditions. Velocity data were analyzed to evaluate the spatial distribution of turbulence properties including Reynolds stress, probability densities, joint probability densities and auto correlations. Contrary to assumptions of current theoretical models, significant influence of flame was observed in every property that was studied in the present investigation. The effective viscosity increased ten-fold when flame was on from cold flow values. The effect of mixing on joint probability as well as in turbulence intensity was suppressed by the flame. The measurements suggest that common assumptions of premixed flame model may result in sizable error in prediction of flame length and temperature distribution in near-field.

Measurements of the Burning Velocities of Flamelets in a Turbulent Premixed Flame

  • Furukawa, Junichi;Noguchi, Yoshiki;Hirano, Toshisuke;Williams, Forman A.
    • Journal of the Korean Society of Combustion
    • /
    • v.6 no.2
    • /
    • pp.65-70
    • /
    • 2001
  • To investigate statistics of flamelet in a turbulent premixed flame and to obtain components of their burning velocities in a vertical plane above a pipe-flow burner, the local motion of flamelets with respect to gas are measured by specially arranged diagnostics, composed of an electrostatic probe with four identical sensors and a two-color four-beam LDV system. With this technique, the three-dimensional local flame-front-velocity vector is measured by the electrostatic probe for the first time, and simultaneously the axial and radial components of the local gas-velocity vector in a vertical plane above the vertically oriented burner are measured by the LDV system. Two components of burning velocities of planar flamelets can be obtained from these results and are found to be distributed over different directions and to range in magnitude from nearly zero to a few times the planar, unstrained adiabatic laminar burning velocity measured in the unburnt gas. It may be concluded from these results that turbulence exerts measurable influences on flamelets and causes at least some of them to exhibit increased burning velocity.

  • PDF

The Characteristics of the Flow and Combustion in a Turbulent Non-Premixed Flat Flame (난류 비예혼합 평면화염의 유동과 연소 특성)

  • Kwark, Ji-Hyun;Jung, Yong-Ki;Jun, Chung-Hwan;Chang, Young-June
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.4
    • /
    • pp.447-457
    • /
    • 2003
  • An experiment in a turbulent non-premixed flat flame was carried out in order to investigate the effect of swirl number on the flow and combustion characteristics. First. stream lines and velocity distribution in the flow field were obtained using PIV method. In contrast with the axial flow without swirl, highly swirled air induced stream lines along the burner tile. and backward flow was caused by recirculation in the center zone of the flow field. In the combustion. the flame with swirled air also became flat and stable along the burner tile with increment of the swirl number. Flame structure by measuring OH and CH radicals intensity and by calculating Damkohler number(Da) and turbulence Reynolds number(Re$_{T}$) was examined. It appeared to be comprised in the wrinkled laminar-flame regime. Backward flow by recirculation of the burned gas decreased the flame temperature and emissions concentrations as NO and CO. Consequently, the stable flat flame with low NO concentration was achieved.d.

Measurements of the Burning Velocities of Flamelets in a Turbulent Premixed Flame

  • Furukawa, Junichi;Noguchi, Yoshiki;Hirano, Toshisuke;Williams, Forman A.
    • Journal of the Korean Society of Combustion
    • /
    • v.7 no.2
    • /
    • pp.62-68
    • /
    • 2002
  • To investigate statistics of flamelet in a turbulent premixed flame and to obtain components of their burning velocities in a vertical plane above a pipe-flow burner, the local motion of flamelets with respect to gas are measured by specially arranged diagnostics, composed of an electrostatic probe with four identical sensors and a two-color four-beam LDV system. With this technique, the three-dimensional local flame- front-velocity vector is measured by the electrostatic probe for the first time, and simultaneously the axial and radial components of the local gas-velocity vector in a vertical plane above the vertically oriented burner are measured by the LDV system. Two components of burning velocities of planar flamelets can be obtained from these results and are found to be distributed over different directions and to range in magnitude from nearly zero to a few times the planar, un strained adiabatic laminar burning velocity measured in the unburnt gas. It may be concluded from these results that turbulence exerts measurable influences on flamelets and causes at least some of them to exhibit increased burning velocity.

  • PDF

An experimental study on microstructure of doubled jet burner flame (이중분류버너화염의 미세구조에 관한 실험적 연구)

  • Jang, In-Gap;Choe, Gyeong-Min;Choe, Byeong-Ryun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.20 no.7
    • /
    • pp.2337-2346
    • /
    • 1996
  • One of the most useful method for increasing combustion loading of premixed flame is to strengthen the turbulent intensity of unburned mixture. It produces an important information to a design of efficient combustion equipment that analysing microstructure of strong turbulence premixed flame. The flame structure and characteristics are depend on the turbulence of unburned mixture. Therefore, to strengthen the turbulent intensity of unburned mixture make flame scale small and accomplish efficient combustion. We measured the velocity of local flame front movements, local eddy radius and local reaction zone thickness quantitatively with increasing turbulent intensity of unburned mixture. We researched the microstructure of flame using ion currents that react sensitively in the reaction zone. Consequently, the velocity of local flame front movements is depend on the velocity of unburned mixture and local eddy scale is to be small with increasing turbulent intensity. But there is no change in local reaction zone thickness with turbulence.