• 제목/요약/키워드: Turbulent Mixing

검색결과 422건 처리시간 0.022초

산화제 입구 속도에 따른 0.2MW 순산소 연소기의 NO 배출 특성 (Effects of Oxidizer Inlet Velocity on NO Emission characteristics of 0.2MW Oxy-Fuel Combustor)

  • 김호근;이상민;안국영;김용모
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2006년도 제32회 KOSCO SYMPOSIUM 논문집
    • /
    • pp.63-68
    • /
    • 2006
  • Effects of oxidizer inlet velocity on NO emission characteristics of 0.2MW oxy-fuel combustor have been experimentally investigated. The NO formation process in the oxy-fuel combustion is extremely sensitive even for the small fraction of nitrogen in oxidizer. By increasing the oxidizer velocity, flame length is reduced due to the enhanced turbulent mixing. The increased oxidizer velocity also results in the decreased flame temperature through the elevated entrainment rate of the recirculated product and the corresponding NO emission is drastically decreased. Experimental results clearly indicate that the entrained product gases play a crucial role to decrease the temperature at the flame zone and the post flame zone where the thermal NO is mainly formed.

  • PDF

메탄 산소 확산화염에서 유속 변화에 따른 연소특성 (Combustion Characteristics for Varying Flow Velocity on Methane/Oxygen Diffusion Flames)

  • 김호근;이상민;안국영;김용모
    • 대한기계학회논문집B
    • /
    • 제29권11호
    • /
    • pp.1277-1284
    • /
    • 2005
  • The combustion characteristics of methane oxygen diffusion flames have been investigated to give basic information for designing industrial oxyfuel combustors. NOx reduction has become one of the most determining factors in the combustor design since the small amount of nitrogen is included from the current low cost oxygen production process. Flame lengths decreased with increasing fuel or oxygen velocity because of the enhancement of mixing effect. Correlation equation between flame length and turbulent kinetic energy was proposed. NOx concentration was reduced with increasing fuel or oxygen velocity because of the enhanced entrainment of the product gas into flame zone as well as the reduction of residence time in combustion zone.

LOCALLY ENRICHED QUADTREE GRID NUMERICAL MODEL FOR NEARSHORE CIRCULATION IN THE SURF ZONE

  • Park, Koo-Yong
    • Water Engineering Research
    • /
    • 제1권3호
    • /
    • pp.187-197
    • /
    • 2000
  • This paper describes an adaptive quadtree-based 2DH wave-current interaction model which is able to predict wave breaking, shoaling, refraction, diffraction, wave-current interaction, set-up and set-down, mixing processes (turbulent diffusion), bottom frictional effects, and movement of the land-water interface at the shoreline. The wave period-and depth-averaged governing equations are discretised explictly by means of an Adams-Bashforth second-order finite difference technaique on adaptive hierarchical staggered quadtree grids. Grid adaptation is achieved through seeding points distributed according to flow criteria(e.g. local current gradients). Results are presented for nearshore circulation at a sinusoidal beach. Enrichment permits refined modelling of important localised flow features.

  • PDF

자연하천 해석을 위한 SU/PG 모형의 개발 (SU/PG Model Evaluation for river dynamics)

  • 한건연;박경옥;백창현
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2004년도 학술발표회
    • /
    • pp.1331-1334
    • /
    • 2004
  • Wet/Dry phenomena typically incorporate a number of complex flow mechanism. These include a momentum transfer and turbulent mixing caused by the delivery of water. However currently available one dimensional schemes applicable to wet/dry process cannot effectively simulate such process. Two dimensional finite element model, SU/PG, is used to simulate complex flow in this study. The Wetted Area Method in SU/PG allows elements to transition gradually between wet and dry states. The model is applicable to a straight river reach with irregular bathymetry. Wet/dry calculation using the wetted area method can simulate simple numerical test. The computed results of velocity vectors and water depth agree with those of observed. The methodology Presented in this study will contributed to two-dimensional wet/dry analysis in a river in this country.

  • PDF

초임계 압력에서 기체수소/액체산소의 연소과정 해석 (Analysis of Gaseous Hydrogen/liquid Oxygen Combustion Processes at Supercritical State)

  • 김태훈;김성구;김용모
    • 한국분무공학회지
    • /
    • 제15권4호
    • /
    • pp.189-194
    • /
    • 2010
  • This study has been mainly motivated to numerically model the transcritical mixing and reacting flow processes encountered in the liquid propellant rocket engines. In the present approach, turbulence is represented by the extended k-$\varepsilon$ turbulence model. To account for the real fluid effects, the propellant mixture properties are calculated by using SRK (Souve-Redlich-Kwong) equation of state model. In order to realistically represent the turbulence-chemistry interaction in the turbulent non-premixed flames, the flamelet approach based on the real fluid flamelet library has been adopted. Based on numerical results, the detailed discussions are made for the real fluid effects and the precise structure of the transcritical cryogenic liquid nitrogen jet and gaseous hydrogen/liquid oxygen coaxial jet flame.

토크 컨버터 내부의 비정상 후류 유동특성에 대한 수치해석 연구 (A Numerical Study of Unsteady Wake Flow Characteristics in a Torque Converter)

  • 원찬식;허남건
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 2004년도 유체기계 연구개발 발표회 논문집
    • /
    • pp.705-710
    • /
    • 2004
  • In the present study, a transient incompressible viscous turbulent flow is simulated for the automotive torque converter with moving mesh technique. For the analysis, entire torque converter flow passages are modeled. Computed torque ratio, capacity factor and efficiency show a good agreement with the experiment data. The flow instabilities characterized by back-flow and wake etc. appeared in some cascade passages are shown to be Propagating along tangential direction. These flow patterns are mainly influenced by the pump and turbine blade passing and can't be predicted through conventional steady simulation with a mixing plane approach. The understanding of the unsteady flow characteristics in a torque converter achieved in the present study may lead to the optimal design of a torque converter.

  • PDF

Hydrodynamic control on site-structured phytoplankton blooms in a periodically mixed estuary

  • Sin, Yong-Sik
    • 해양환경안전학회:학술대회논문집
    • /
    • 해양환경안전학회 2001년도 추계학술발표회
    • /
    • pp.137-144
    • /
    • 2001
  • A Plankton ecosystem model was developed to investigate effects of hydrodynamic processes including advection and diffusion on size-structured phytoplankton dynamics in the mesohaline zone of the York River estuarine system, Virginia, USA. The model included 12 state variables representing the distribution of carbon and nutrients in the surface mixed layer. Groupings of autotrophs and heterotrophs were based on cell site and ecological hierarchy Forcing functions included incident radiation, temperature, wind stress, mean How and tide which includes advective transport and turbulent mixing. The ecosystem model was developed in FORTRAN using differential equations that were solved using the 4th order Runge-Kutta technique. The model showed that microphytoplankton blooms during winter-spring resulted from a combination of vertical advection and diffusion of phytoplankton cells rather than in-situ production in the lower York River estuary.

  • PDF

An Experimental Investigation of the Interfacial Condensation Heat Transfer in Steam/water Countercurrent Stratified Flow in a Horizontal Pipe

  • Chu, In-Cheol;Yu, Seon-Oh;Chun, Moon-Hyun;Kim, Byong-Sup;Kim, Yang-Seok;Kim, In-Hwan;Lee, Sang-Won
    • 한국원자력학회:학술대회논문집
    • /
    • 한국원자력학회 1998년도 춘계학술발표회논문집(1)
    • /
    • pp.565-570
    • /
    • 1998
  • An interfacial condensation heat transfer phenomenon in a steam/water countercurrent stratified flow in a nearly horizontal pipe has been experimentally investigated. The present study has been focused on the measurement of the temperature and velocity distributions within the water layer. In particular, the water layer thickness used in the present work is large enough so that the turbulent mixing is limited and the thermal stratification is established. As a result, the thermal resistance of the water layer to the condensation heat transfer is increased significantly. An empirical correlation of the interfacial condensation heat transfer has been developed. The present correlation agrees with the data within $\pm$15%

  • PDF

A Study on Prediction of the Base Pressures for an Axi-Symmetric Body

  • Baik, Doo-Sung;Han, Young-Chool
    • Journal of Mechanical Science and Technology
    • /
    • 제15권10호
    • /
    • pp.1423-1433
    • /
    • 2001
  • A flow modeling method has been developed to analyze the flow in the annular base (rear- facing surface) of a circular engine nacelle flying at subsonic speed but with a supersonic exhaust jet. Real values of exhaust gas properties and temperature at an altitude of 30, 000 feet are employed. Potential flows of the air and gas streams are computed for the flow past a separated wake. Then a viscous jet mixing is superimposed on this inviscid solution. Conserva- tion of mass, momentum and energy for the wake flow field is achieved by multiple iterations with modest computer requirements.

  • PDF

2차원 경사 충돌제트의 열전달에 관한 실험적 연구 (Experimental investigation on heat transfer with a two-dimensional oblique impinging jet)

  • 윤순현;김문경;이대희
    • 설비공학논문집
    • /
    • 제9권4호
    • /
    • pp.427-434
    • /
    • 1997
  • Heat transfer characteristics of a two-dimensional oblique impinging jet were experimentally investigated. The local heat transfer coefficients were measured by a thermochromic liquid crystal. The jet Reynolds number studied was varied from 10000 to 35000, the nozzle-to-plate distance(H/B) from 2 to 16, and the oblique angle($\alpha$) from $60^{\circ}$ to $90^{\circ}$. It was observed that the local Nusselt numbers in the minor flow region were larger than those in the major flow region at the same distance along the plate due to the higher levels in the turbulent intensity caused by more active mixing of the jet flow.

  • PDF