• Title/Summary/Keyword: Turbulent Mixing

검색결과 422건 처리시간 0.023초

밀도성층화된 흐름수역으로 방류되는 해양방류관의 초기확산해석 (Initial Mixing Analysis of Ocean Outfalls Discharged into Density Stratified Flowing Ambients)

  • 이재형;서일원
    • 한국수자원학회논문집
    • /
    • 제33권2호
    • /
    • pp.207-217
    • /
    • 2000
  • 밀도성층화된 흐름 수역으로 방류되는 부력제트에 의한 초기확산을 해석하기 위하여 수치모형을 적용하였다. 수치모형은 제트적분모형으로서 흐름수역의 원역에서의 대표적 특성으로 밝혀진 쌍와흐름특성을 모형에 반영한 Gaussian-vortex모형이다. 수치모형의 현장 적용성을 검토하기 위하여 수표면에서의 초기희석에 대한 관측이 수행된 6개의 해양방류관에 수치모형을 적용하였다. 현장관측자료에 대한 수치모형의 적용결과, 개발된 수치모형이 하수확산관에 의해 해양으로 방류되는 오염물질의 초기 확산해석에 활용될 수 있음을 알 수 있었다.

  • PDF

Planar-Jet형 연소기 내 난류유동의 LES (Large-Eddy Simulation of Turbulent Flows in a Planar Combustor)

  • 김도형;양경수;신동신
    • 대한기계학회논문집B
    • /
    • 제24권10호
    • /
    • pp.1409-1416
    • /
    • 2000
  • In this study, turbulent flows in a planar combustor which has a square rib-type flame holder are numerically investigated by Large Eddy Simulation(LES). Firstly, the flow fields with or without jet injection downstream of the flame-holder are examined using uniform inlet velocity. Comparison of the present LES results with experimental one shows a good agreement. Secondly, to investigate mixing of oxidizer(air) and fuel injected behind the flame holder, the scalar-transport equation is introduced and solved. From the instantaneous flow and scalar fields, complex and intense mixing phenomena between fuel and jet are observed. It is shown that the ratio of jet to blocked air velocity is an important factor to determine the flow structure. Especially, when the ratio is large enough, the fuel jet penetrates the main vortices shed from the flame holder, resulting in significant changes in the flow and scalar fields.

2次元 表面 溫排水 의 擴散 (I) (Diffusion of Two-Dimensional Surface Discharge of Heated Water in a Recangular Reservoir(l))

  • 이상준;정명균
    • 대한기계학회논문집
    • /
    • 제8권6호
    • /
    • pp.536-543
    • /
    • 1984
  • 본 연구에서는 유동 조건을 표시하는 무차원 수로 널리 이용되고 있는 Richa- rdson수(R$_{i}$)를 변수로 하여 R$_{i}$의 변화에 따른 온도 분포, 표면 유동 속도와 확산율 등을 연구하였다. 아울러 이러한 열 구배에 의한 성층화 유동(stratifield flow)에서 R$_{i}$가 유동 특성과 어떤 상관 관계를 가지는 가를 알아보기 위하여 같 은 R$_{i}$값을 갖는 다른 조건들의 실험을 수행하였다. 비슷한 R$_{i}$값에서의 온 도 분포를 비교 분석함으로써 아직까지 정립되고 있지 않는 열오염 현상 해석에서의 지배 변수로서의 R$_{i}$의 위치를 확인하고, 부력 효과에 의한 흐름의 난류 구조가 어떻게 영향 받는가 하는 문제에도 관심을 두었다.제에도 관심을 두었다.

2次元 垂直壁을 지니는 再附着 剝離 斷層 의 亂流構造 에 관한 硏究 (I) (Investigation on the Turbulence Structure of Reattaching Separated Shear Layer Past a Two-Dimensional Vetrical Fenc(I))

  • 김경천;정명균
    • 대한기계학회논문집
    • /
    • 제9권4호
    • /
    • pp.403-413
    • /
    • 1985
  • 본 논문에서는 수직벽 하류에 형성되는 박이 전단층의 발전과 재부착 그리고 재발전 경계층에 대해 평균 속도, 벽면의 압력 분포, 난류 강도, 레이놀즈 전단 압력 및 아직 수직벽에 대해서는 보고된바 없는 난류 떨림 속도 성분들의 3승곱 통계치를 측정하여 난류 구조의 변화를 분석하고 이를 수치적 계산 모델개발의 자 료로 제공하고자 함이 이 연구의 목적이다.

마이크로 가스터빈을 위한 하이브리드/이중 선회제트 연소기의 개발 (Part II: 비반응 유동구조에 관한 수치해석) (Development of a Hybrid/Dual Swirl Jet Combustor for a Micro-Gas Turbine (Part II: Numerical Analysis on Isothermal Flow Structure))

  • 문선여;황해주;황철홍;이기만
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2012년도 제44회 KOSCO SYMPOSIUM 초록집
    • /
    • pp.201-202
    • /
    • 2012
  • The isothermal flow structure and mixing characteristics of a hybrid/dual swirl jet combustor for micro-gas turbine were numerically investigated. Location of pilot nozzle, angle and direction of swirl vane were varied as main parameters with constant fuel flow rates for each nozzle. As a result, the variation in location of pilot nozzle resulted in significant change in turbulent flow field near burner exit, in particular, center toroidal recirculation zone (CTRZ) as well as turbulent intensity, and thus flame stability and emission characteristics might be significantly changed. The swirl angle of $45^{\circ}$ provided similar recirculating flow patterns in a wide range of equivalence ratio (0.5~1.0). Compared to the co-swirl flow, the counter-swirl flow leaded to the reduction in CTRZ and fuel-air mixing near the burner exit and a weak interaction between the pilot partially premixed flame and the lean premixed flame. With the comparison of experimental results, it was confirmed that the case of co-swirl flow and swirl $angle=45^{\circ}$ would provided an optimized combustor performance in terms of flame stability and pollutant emissions.

  • PDF

Development and validation of a fast sub-channel code for LWR multi-physics analyses

  • Chaudri, Khurrum Saleem;Kim, Jaeha;Kim, Yonghee
    • Nuclear Engineering and Technology
    • /
    • 제51권5호
    • /
    • pp.1218-1230
    • /
    • 2019
  • A sub-channel solver, named ${\underline{S}}teady$ and ${\underline{T}}ransient$ ${\underline{A}}nalyzer$ for ${\underline{R}}eactor$ ${\underline{T}}hermal$ hydraulics (START), has been developed using the homogenous model for two-phase conditions of light water reactors. The code is developed as a fast and accurate TH-solver for coupled and multi-physics calculations. START has been validated against the NUPEC PWR Sub-channel and Bundle Test (PSBT) database. Tests like single-channel quality and void-fraction for steady state, outlet fluid temperature for steady state, rod-bundle quality and void-fraction for both steady state and transient conditions have been analyzed and compared with experimental values. Results reveal a good accuracy of solution for both steady state and transient scenarios. Axially different values for turbulent mixing coefficient are used based on different grid-spacer types. This provides better results as compared to using a single value of turbulent mixing coefficient. Code-to-code evaluation of PSBT results by the START code compares well with other industrial codes. The START code has been parallelized with the OpenMP algorithm and its numerical performance is evaluated with a large whole PWR core. Scaling study of START shows a good parallel performance.

Investigation of Spacer Grid Thermal Mixing Performance Based on Hydraulic Tests

  • Yang, Sun-Kyu;Min, Kyung-Ho;Chung, Moon-Ki
    • 한국원자력학회:학술대회논문집
    • /
    • 한국원자력학회 1995년도 추계학술발표회논문집(1)
    • /
    • pp.377-382
    • /
    • 1995
  • An evaluation method of spacer grid thermal mixing performance in rod bundles is suggested based on hydraulic tests in a single phase flow. Heat transfer correlation was derived by the analogy between momentum and heat transfer. Three of major factors, such as blockage ratio of spacer grid, convective flow swirling, and turbulent intensity, were found to be significantly influential to the spacer grid thermal mixing performance. Local heat transfer near spacer grid was predicted for the hydraulic test of 6 ${\times}$ 6 rod bundles with neighboring different spacer grids.

  • PDF

헬륨$\cdot$공기흡합기농도분포에 관한 실험적 연구 (An experimental study on the concentration distribution of helium and air mixture in the direct injection type engine)

  • 김봉곤;하종률;권순석
    • 오토저널
    • /
    • 제12권1호
    • /
    • pp.33-39
    • /
    • 1990
  • This study has been conducted by experiments for distribution of concentration of helium gas, which is jetted into stationary atmosphere at the normal temperature and pressure. It is able to obtain the data for concentration of helium and air mixtures by the use of hot wire probe which has fast response. At an up stream, the concentration gradient which is attained is steep. At a down stream, the mixing time of helium and air is gradually shortened with the lapse of time in front of a jet. The arrival frequency of a jet in an unsteady area is mostly constant from 0% to 100% up to 80mm, but the time which is reaching to 100% is gradually to lengthen as a descending downstream. After starting a jet and the point of 90%, the mixing time is especially to lengthen. This reason comes from the turbulent intensity which causes for mixing of helium and air. This time difference which causes according to lengthen a jet should be considered in the design of combustion chamber.

  • PDF

Study of the Supersonic Ejector-Diffuser System with a Mixing Guide Vane at the Inlet of Secondary Stream

  • ;;김희동
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2011년도 제37회 추계학술대회논문집
    • /
    • pp.182-186
    • /
    • 2011
  • Ejector-diffuser system has long been used in many diverse fields of engineering applications and it has advantages over other fluid machinery, because of no moving parts and structural simplicity. This system makes use of high-pressure primary stream to entrain the low-pressure secondary stream through pure shear actions between two streams. In general, the flow field in the ejector-diffuser system is highly complicated due to turbulent mixing, compressibility effects and sometimes flow unsteadiness. A fatal drawback of the ejector system is in its low efficiency. Many works have been done to improve the performance of the ejector system, but not yet satisfactory, compared with that of other fluid machinery. In the present study, a mixing guide vane was installed at the inlet of the secondary stream for the purpose of the performance improvement of the ejector system. A CFD method has been applied to simulate the supersonic flows inside the ejector-diffuser system. The present results obtained were validated with existing experimental data. The mixing guide vane effects are discussed in terms of the entrainment ratio, total pressure loss as well as pressure recovery.

  • PDF

익렬간 혼합모델을 이용한 토크 컨버터 유동장의 수치계산 (Numerical calculation of torque converter flow using interrow mixing model)

  • 박재인;조강래
    • 대한기계학회논문집B
    • /
    • 제22권3호
    • /
    • pp.326-335
    • /
    • 1998
  • In this study, a steady three-dimensional incompressible turbulent flow within a torque converter was numerically analyzed with the introduction of interrow mixing model. Mixing planes were introduced to exchange the flow informations between two adjacent elements of the torque converter. The mixing planes were installed among three elements of the torque converter. Therefore, in the present method, it could be possible to calculate the flow-filed within the torque converter without any assumption of circulating flow rates or any extension of boundaries toward the upstream and the downstream for each element. The numerically calculated performances of the torque converter were in good agreement with experimental results, and the complex flow patterns were be observed according to design and off-design condition. As a conclusion, it was found that the present numerical method was very effective in the steady flow analysis of torque converters.