• Title/Summary/Keyword: Turbulent Mixing

Search Result 422, Processing Time 0.02 seconds

Numerical Analysis for the Performance Prediction of Combustion Chamber of Commercial Incinerator (상업용 소각로 연소실 성능예측을 위한 수치해석 연구)

  • Lee, Jin-Wook;Park, Byung-Soo;Yun, Yong-Seung;Seo, Jung-Dae;Huh, Il-Sang
    • Journal of the Korean Society of Combustion
    • /
    • v.4 no.1
    • /
    • pp.141-153
    • /
    • 1999
  • Numerical analysis for the combustion flow in the combustion chamber of incineration system has been carried out in order to acquire the basic design capability of incineration system. Established mathematical model was applied to the performance prediction of the pre-designed combustion chamber of commercial plant. Especially, combustion characteristics and the variation of flow pattern have been deeply discussed in accordance with secondary air injection. Secondary air injection was effective for the turbulent mixing between air and carbon monoxide/volatile matter resulting in considerably reduced CO content at the exit. Secondary air injection was found to be one of the key design parameters because the size of recirculation zone could be changed with the variation of injection characteristics.

  • PDF

A Study on Unsteady Flow Characteristics of Triangular Grooved Channel (삼각형상 그루브 채널의 비정상 유동특성에 관한 연구)

  • 조대환
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.8 no.1
    • /
    • pp.101-108
    • /
    • 2002
  • This experimental study was performed to investigate internal flow and unsteady flow characteristics using a model for actual shape of a Plate heat exchanger and visualization of flow through the particle image velocimetry. Seven Reynolds numbers were selected by calculation with the height of grooved channel and sectional mean velocity of inlet flow in the experiment, and instantaneous velocity distributions and flow characteristics were experimently investigated. The triangular grooved channel had a compound flow consisting of the flow in lower channel and the groove flow receiving shear stress by the channel flow in the experiment. The sheared mixing layer, in the boundary between the triangular groove and the channel. affected main flow to raise turbulent in the channel.

  • PDF

Prediction of Asymmetric Turbulent Fluid Flow and Heat Transfer in the Parallel Plates (평행평판내 비대칭 난류유동과 열전달의 예측)

  • 오세경
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.22 no.3
    • /
    • pp.303-310
    • /
    • 1998
  • We report on the analytical results of examination of fully developed asymmetric flow and heat transfer between parallel plane plates. The asymmetry was introduced by roughening one of the plane while the other was left smooth. The integral method together with a turbulence model based on modified Prandtl's mixing length theory for the rough was used to determine the velocity distribution and friction. The temperature distrtibution is then predicted and heat transfer coefficients are calculated. The present paper shows that the heat transfer increases more than the friction factor for a given roughness structure. Generally the results show the strong effect of asymmetry on engineering parameters. Furthermore it is the roughness structure which influences the nature of asymmetry and heat transfer.

  • PDF

Effect of Flows on the Evolution of Sprays and Combustion in Ramjet Combustor (I) : Ram Air Flows in Combustion Chamber (램제트 연소기 내 유동조건에 따른 분무 및 연소천이 (I) : 연소실 램공기 유동)

  • 함희철;이진호;윤웅섭
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2002.04a
    • /
    • pp.50-54
    • /
    • 2002
  • With a view to estimating the effect of flows on evolving sprays and combustion in ramjet combustor and corresponding extent of combustion, ram air flows in combustion chamber is numerically experimented. Preconditioned three dimensional Navier-Stokes system of equations per transient, compressible, turbulent flows in IRR(Integral Rocket Ramjet) combustor is numerically integrated. Flow properties in the side-dump ramjet combustor, rectangular duct with two 60-deg curved inlets located radially at an angle of 180-deg, are addressed in terms of mixing quality and extent of combustion efficiency.

  • PDF

Numerical Study on the Effect Recess on the Turbulent Combustion of Kerosene/LOx Coaxial Rocket Injector (케로신-산소 로켓 동축 분사기 난류 연소에서 리세스의 영향에 대한 수치해석)

  • Choi, Jeong-Yeol;Shin, Jae-Ryul
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.11a
    • /
    • pp.92-95
    • /
    • 2011
  • A multi-step quasi-global mechanism is developed for the kerosene/oxygen combustion analysis including dissociation products. Reaction constants of the global reaction are determined to have agreement with experimental data. The mechanism is used for the numerical analysis of the combustion flow field of the kerosene/oxygen shear coaxial injector. The results from high-resolution numerical analysis confirmed qualitatively that the recess enhance the fuel/air mixing and combustion efficiency by the increased flow instabilities.

  • PDF

Effects of Swirl number and Recess length on Flame Structure of Supercritical Kerosene/LOx Double Swirl Coaxial Injector (선회수와 리세스 길이가 초임계상태 케로신/액체산소 이중 와류 동축형 분사기의 화염구조에 미치는 영향 해석)

  • Park, Sangwoon;Kim, Taehoon;Kim, Yongmo
    • 한국연소학회:학술대회논문집
    • /
    • 2012.11a
    • /
    • pp.33-35
    • /
    • 2012
  • This study has been mainly motivated to numerically model the supercritical mixing and combustion processes encountered in the liquid propellant rocket engines. In the present approach, turbulence is represented by the extended k-e model. To account for the real fluid effects, the propellant mixture properties are calculated by using generalized cubic equation of state. In order to realistically represent the turbulence-chemistry interaction in the turbulent nonpremixed flames, the flamelet approach based on the real fluid flamelet library has been adopted. Based on numerical results, the detailed discussions are made for the effects of swirl number on flame structure of supercritical kerosene/LOx double swirl coaxial injector.

  • PDF

Parametric Study on the Design of Turbocharger Journal Bearing (터보챠져 저어널베어링의 설계에 관한 매개변수 연구)

  • Chun, Sang-Myung
    • Tribology and Lubricants
    • /
    • v.23 no.1
    • /
    • pp.1-8
    • /
    • 2007
  • Turbocharger bearings are under the circumstance of high temperature, moreover rotated at high speed. It is necessary to be designed to overcome the high temperature. So the type of oil inlet port, the inlet oil temperature and the sort of engine oil should be designed, controlled and selected carefully in order to reduce the bearing inside temperature. Therefore, in this study, the effects of the type of inlet oil port, inlet temperature and the sort of engine oil on the performance of a turbocharger bearing are to be investigated. It is found that the type of oil inlet ports, the control of inlet oil temperature and the selection of engine oil type play important roles in determining the temperature and pressure, then the friction and load of a turbocharger journal bearing at high speed operation.

Numerical Study of Slot Injection in Supersonic combustor (초음속 연소기내부의 측면제트분사에 대한 수치적 연구)

  • 김종록;김재수
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2003.10a
    • /
    • pp.108-113
    • /
    • 2003
  • The numerical research has been done for the transverse jet behind a rearward- facing step in turbulent supersonic flow without chemical reaction. The purpose of transverse jet is used to improve mixing of the fuel in the combustor. Two- dimensional unsteady flowfields generated by slot injection into supersonic flow are numerically simulated by the integration of Navier-Stokes equation with two-equation k - $\varepsilon$ turbulence model. Numerical methods are used high-order upwind TVD scheme. Eight cases are computed, comprising slot momentum flux ratios and slot position at downstream of the step. The flow is very similar to the cavity flow, because the jet is like an obstacle. Therefore, the numerical results show the periodic phenomenon.

  • PDF

An Experimental Study on the Similarity of Confined Coaxial Jets (동축 이중제한분류의 상사성에 대한 실험적 연구)

  • 사용철;이태환;이준식
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.5
    • /
    • pp.1291-1299
    • /
    • 1995
  • In confined coaxial jets, the flow-mixing characteristics depend on the initial conditions at the nozzle outlet such as velocity ratio and nozzle radius ratio. In this study, nozzle ratio(inner/outer) was 0.3. Longitudinal axial velocity, turbulent intensity and Reynolds shear stress were measured by CTA. Measurements were made from the duct inlet to the region where similarity solution could exist. This study investigated flow charicteristics according to the variation of similitude parameter which was derived from the theory of Craya-Cutet. The range of similarity region depends on the variation of the similitude patameter. The form factor obtained from the axial velocity profile in the similarity region was constant. The higher the similitude parameter, the wider the spread rate of the jets. Due to this fact, the similarity conditions developed more quickly and the region where the similarity holds became narrow. Present experimental data confirmed the validity of Craya-Curtet theory.

Numerical Simulation for Model Gas Turbine Combustor (모형 가스터빈 연소기의 수치해석적 연구)

  • 김태한;최병륜
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.7
    • /
    • pp.1789-1798
    • /
    • 1994
  • This paper aimed for numerical simulation of complicated gas turbine combustor with swirler. For the convenience of numerical analysis, fuel nozzle and air linear hole areas of secondary and dilution zone, which are issued to jet stream, were simplified to equivalent areas of annular type. In other to solve these problems, imaginary source terms which are corresponded to supplied fuel amount were added to those of governing equation. Chemical equilibrium model of infinite reaction rate and $k-{\epsilon}-g$ model with the consideration of density fluctuation were applied. As the result, swirl intensity contributed to mixing of supplied fuel and air, and to speed up the flame velocity than no swirl condition. Temperature profiles were higher than experimental results at the upstream and lower at the downstream, but total energy balance was accomplished. As these properties showed the similar trend qualitatively, simplified simulation method was worth to apply to complicated combustor for predicting combustion characteristics.