• Title/Summary/Keyword: Turbulent Jet

Search Result 459, Processing Time 0.036 seconds

Effects of Shock Waves on the Mixing and the Recirculation Zone of Supersonic Diffusion Flames (초음속 확산화염 내의 혼합과 재순환 영역에 대한 충격파의 영향)

  • Kim, Ji-Ho;Huh, Hwan-Il;Choi, Jeong-Yeol;Yoon, Young-Bin;Jeung, In-Seuck
    • 한국연소학회:학술대회논문집
    • /
    • 1998.10a
    • /
    • pp.123-129
    • /
    • 1998
  • A numerical study has been conducted to investigate the effect of shock waves on the mixing and the recirculation zone of a hydrogen jet diffusion flame in a supersonic combustor. The general trends are compared with the experimental results obtained from the supersonic combustor at the University of Michigan. For the numerical simulation of supersonic diffusion flames, multi-species Navier-Stokes equations and detailed chemistry reaction equations of $H_2$-Air are considered. The $K-{\omega}/k-{\varepsilon}$ blended two equation turbulent model is used. Roe's FDS method and MUSCL method are used for convection fluxes in governing equations. Numerical results show that when slender wedges are mounted at the combustor wall the mixing and the combustion are enhanced and the size of recirculation zone is increased . The flame shape of supersonic flames is different in the flame-tip; it is not closed but open. The flame shape is shown to be greatly affected by shock waves.

  • PDF

Modeling for gaseous methane/liquid oxygen combustion processes at supercritical pressure (초임계 압력상태의 기체메탄/액체산소 연소과정 해석)

  • Kim, Tae-Hoon;Kim, Yong-Mo;Kim, Seong-Ku
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.11a
    • /
    • pp.85-88
    • /
    • 2010
  • This study has been mainly motivated to numerically model the supercritical mixing and combustion processes encountered in the liquid propellant rocket engines. In the present approach, turbulence is represented by the extended $k-{\varepsilon}$ turbulence model. To account for the real fluid effects, the propellant mixture properties are calculated by using SRK (Souve-Redlich-Kwong) equation of state. In order to realistically represent the turbulence-chemistry interaction in the turbulent nonpremixed flames, the flamelet approach based on the real fluid flamelet library has been adopted. Based on numerical results, the detailed discussions are made for the real fluid effects and the precise structure of gaseous methane/liquid oxygen coaxial jet flame.

  • PDF

3-D CFD Analysis of the CANDU-6 Moderator Circulation Under Nnormal Operating Conditions

  • Yoon, Churl;Rhee, Bo-Wook;Min, Byung-Joo
    • Nuclear Engineering and Technology
    • /
    • v.36 no.6
    • /
    • pp.559-570
    • /
    • 2004
  • A computational fluid dynamics model for predicting moderator circulation inside the Canada deuterium uranium (CANDU) reactor vessel has been developed to estimate the local subcooling of the moderator in the vicinity of the calandria tubes. The buoyancy effect induced by the internal heating is accounted for by the Boussinesq approximation. The standard $k-{\varepsilon}$ turbulence model with logarithmic wall treatment is applied to predict the turbulent jet flows from the inlet nozzles. The matrix of the calandria tubes in the core region is simplified to a porous media in which the anisotropic hydraulic impedance is modeled using an empirical correlation of pressure loss. The governing equations are solved by DFX-4.4, a commercial CFD code developed by AEA technology. The resultant flow patterns of the constant-z slices containing the inlet nozzles and the outlet port are "mined-type", as observed in the former 2-dimensional experimental investigations. With 103% full power for conservatism, the maximum temperature of the moderator is $82.9^{\circ}C$ at the top of the core region. Considering the hydrostatic pressure change, the minimum subcooling is $24.8^{\circ}C$.

Velocity Measurement Technique in a Narrow Passage by Hot-wire Anemometer (열선유속계를 이용한 좁은 유로 내 유속 측정법)

  • Kim, Won-Kap;Han, Seong-Ho;Choi, Young-Don
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.19 no.2
    • /
    • pp.191-201
    • /
    • 2007
  • It was noted by the several researchers that the voltage outputs in response to a single yawed hot-wire sensor in a flow perpendicular to the axis deviate from the theoretical voltage output by King's law and Jorgensen's relation. This study noticed that the calibration coefficients of original Grande's method are not constant and fairly sensitive to the radial angle (${\alpha}_{R}$). For more accuracy, this study interpolated the parameters of the Grande relation as a function of radial angle and compared velocity components with ones by Jorgensen and original Grande relation in the calibration jet flow. Finally, as a test case, 3-dimensional turbulent flows of the inlet plane of 180 degree bend are measured and compared the velocity components by above three methods and showed the characteristics of the flows.

Numerical Investigation of Hydraulic Jump in a Spillway (여수로에서 도수 수치해석 연구)

  • Paik, Joongcheol;Ryu, Yong Uk;Lee, Nam-Ju
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2017.05a
    • /
    • pp.66-66
    • /
    • 2017
  • Hydraulic jump is typically designed to occur over low-haed dam spillways and weirs in the river. An important engineering application of the hydraulic jump is to dissipate the intense kinetic energy of the flows over such hydraulic structures. Turbulent flow and roller-like vortex riding up the free sureface of the jump cause most of the energy dissipation. We carry out a high resolution three-dimensional numerical simulations of a submerged hydraulic jump in a spillway and compare numerical results with a laboratory measurement obtained by the PIV. The numerical results further show the dynamic behavoirs of the inner and outer layers of the submerged wall-jet and the recirculating roller of the hydraulic jump.

  • PDF

Experimental and numerical investigation of a surface-fixed horizontal porous wave barrier

  • Poguluri, Sunny Kumar;Kim, Jeongrok;George, Arun;Cho, I.H.
    • Ocean Systems Engineering
    • /
    • v.11 no.1
    • /
    • pp.1-16
    • /
    • 2021
  • Experimental and numerical investigations were conducted to study the performance of a surface-fixed horizontal porous wave barrier in regular waves. The characteristics of the reflection and transmission coefficients, energy dissipation, and vertical wave force were examined versus different porosities of the barrier. Numerical simulations based on 3D Reynolds Averaged Navier-Stokes equations with standard low-Re k-ε turbulent closure and volume of fluid approach were accomplished and compared with the experimental results conducted in a 2D wave tank. Experimental measurements and numerical simulations were shown to be in satisfactory agreement. The qualitative wave behavior propagating over a horizontal porous barrier such as wave run-up, wave breaking, air entrapment, jet flow, and vortex generation was reproduced by CFD computation. Through the discrete harmonic decomposition of the vertical wave force on a wave barrier, the nonlinear characteristics were revealed quantitatively. It was concluded that the surface-fixed horizontal barrier is more effective in dissipating wave energy in the short wave period region and more energy conversion was observed from the first harmonic to higher harmonics with the increase of porosity. The present numerical approach will provide a predictive tool for an accurate and efficient design of the surface-fixed horizontal porous wave barrier.

Neural network model for turbulent jet (난류 제트 신경망 모델)

  • Choi, Seongeun;Hwang, Jin Hwan
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2022.05a
    • /
    • pp.247-247
    • /
    • 2022
  • 제트류는 복잡한 흐름 중 하나로 다양한 크기의 에디가 다양한 운동량을 가지고 있다. 이러한 제트류를 구현하기 위해서는 난류 운동 에너지 등 제트류의 특성을 잘 반영하여야 한다. 제트를 구현하기 위해서는 수리학적 모델, 현장 실험 등 많은 방법이 있으며, 본 연구에서는 상대적으로 공간, 시간적 비용이 적게 드는 수치해석 방법을 사용하여 연구를 진행하였다. 대표적인 수치해석방법에는 DNS(Direct Numerical Simulation), LES(Large Eddy Simulation), RANS(Reynolds Averaged Navier Stokes) 등이 있다. RANS는 시간 평균 흐름 특성만 산출하며 제트의 복잡성을 재현하는 데 한계가 있어, 본 연구는 DNS와 LES 모델을 이용하여 제트류를 구현하는 것에 초점을 맞추었다. DNS는 해당 격자에서 발생하는 모든 에디를 직접 해석 때문에 난류 모델링이 필요하지 않지만, 많은 수의 그리드가 필요하여 수치해석 시 소요시간이 긴 편이다. LES는 대규모 에디는 직접 해석하지만 일정 크기 이하의 소용돌이를 해석하기 위해서 모델이 필요하다. 따라서 서브 그리드 모델에 따라 약간 다른 결과를 보인다. 이러한 문제점을 해결하기 위해 본 연구에서는 LES의 기존 서브 그리드 모델을 사용하지 않고 신경망 모델로 학습한 DNS 결과를 활용하는 방법을 제안한다. 우선 DNS와 LES 모델을 사용하여 에너지 스펙트럼을 비교하여 서브 그리드 모델이 시작하는 파수를 찾는다. 이후 특정 파수 아래의 작은 에디를 모사할 적절한 신경망 모델을 결정하여 DNS의 작은 에디를 신경망 알고리즘이 모사할 수 있도록 학습시킨다. 이후 기존 서브 그리드 모델을 사용하지 않고 학습된 신경망 알고리즘을 사용한 LES 모델이 모사한 제트류와 실제 DNS 모델을 사용한 제트류를 비교 및 평가한다.

  • PDF

Lateral Spreading of a River Plume and Transport of Suspended Sediments in the Nakdong Estuary (낙동강하구에서의 하천수 플룸의 횡방향퍼짐과 부유퇴적물의 수송)

  • Yu, Hong-Sun;Lee, Jun;Kang, Hyo-Jin;Kang, Sin-Young;Park, Kyung-Sik;Kim, Jae-Soo
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.5 no.4
    • /
    • pp.296-301
    • /
    • 1993
  • A hydrodynamic solution for the lateral spreading of a river plume which was developed by assuming a Gaussian distribution of density difference between a turbulent jet river plume and ambient salt water is verified by the field data in the Nakdong river plume. Effect of the river plume on the transport of fine-grained suspended sediment at the Nakdong Estuary is also examined. The analysis of fold data showed a reasonably good correspondence with the theoretical solution adopted in this work Therefore, the hydrodynamic solution can be used as a useful tool in dealing with the lateral spreading of a river plume. The density stratification due to the existence of a river plume seems to cause a retarded settling of the suspended sediments in the water column. and thus a farther transport of the fine sediment is expected than in the normal steady flow.

  • PDF

Effects of Orifice Internal Flow on Transverse Injection into Subsonic Crossflows (아음속 유동장에 수직분사시 오리피스 내부유동 효과에 대한 연구)

  • 김정훈;안규복;윤영빈
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.7 no.1
    • /
    • pp.28-39
    • /
    • 2003
  • Effects of the orifice internal flow such as cavitation and hydraulic flip on transverse injection into subsonic crossflows have been studied. The liquid column breakup length and the liquid column trajectory were measured by changing the orifice diameter (d), the orifice length/orifice diameter (L/d), the injection pressure and the shapes (sharp and round) of orifice entrance, and were compared with previous results. It is found that cavitation bubbles, which occur inside the sharp-edged orifice, make the liquid jet very turbulent and especially in the orifices with L/d = 5 hydraulic flip appear as cavitation bubbles are emitted from the orifice. The breakup length is shorter as cavitation bubbles grows and hydraulic flip appears. However, the liquid column trajectories normalized by the effective diameter and the effective momentum ratio have a similar tendency irrespective of cavitation and hydraulic flip.

On the Behavior of Liquid Droplets Depending upon ALR in Two-phase Internal Mixing Nozzle Jet (2상 내부 혼합형 노즐분사에서 ALR 변화에 따른 액적의 거동)

  • Kim Kyu Chul;Namkung Jung Hwan;Lee Sang Jin;Rho Byung Joon
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.385-388
    • /
    • 2002
  • The researches of a two-phase atomizers have been carried out in the field of automotive and aerospace industries in order to improve the atomization performance of the liquid droplets ejecting from these nozzles. The smaller droplets have the advantages of the reduction of environmental pollution matter and effective use of energy through the improvement of heat and mass transfer efficiency. Thus, to propose the basic information of two-phase flow, an internal mixing atomizer was designed, its shape factor was 0.6 and the liquid feeding hole was positioned at the center of the mixing tube which was used to mix the air and liquid. The experimental work was performed in the field after the nozzle exit orifice. The measurement of the liquid droplets was made by PDPA system. This system can measure the velocity and size of the droplets simultaneously. The number of the droplets used in this calculation was set to 10,000. The flow patterns were regulated by ALR (Air to Liquid mass Ratio). ALR was varied from 0.1024 to 0.3238 depending on the mass flow rate of the air. The analysis of sampling data was mainly focused on the spray characteristics such as flow characteristics distributions, half-width of spray, RMS, and turbulent kinetic energy with ALR.

  • PDF