• 제목/요약/키워드: Turbulent Flows

검색결과 740건 처리시간 0.02초

Smagorinsky model을 이용한 실린더 및 익형 주위의 LES 난류유동해석 (Turbulent Flow Analysis around Circular Cylinder and Airfoil by Large Eddy Simulation with Smagorinsky Model)

  • 박금성;구본국;박원규;전호환
    • 대한조선학회논문집
    • /
    • 제41권4호
    • /
    • pp.1-8
    • /
    • 2004
  • As a computer has been continuously progressed to reduce R&D time and cost, the study of the flow physics has been significantly relied on the numerical method. Recently, Large Eddy Simulation(LES) has been widely used in CFD community to accurately capture the turbulent flows. The LES code requires high accuracy in time, as well as in space. Also, it should have strong robustness to ensure the convergence in various complicated flows. The objective of the present work is to develop a base code for LES simulation, having 2$^{nd}$ order accuracy in time and 4$^{th}$ order accuracy in space. To achieve the present objective, the four-step fractional step method was enhanced by adopting compact Pade'scheme. The standard Smagorinsky model was implemented for the first stage of the present code development. The flows over a cylinder and an airfoil were successfully simulated. and an airfoil were successfully simulated.

LDV에 의한 정사각 단면 180° 곡덕트에서 난류진동유동의 유동특성 (Characteristics of Developing Turbulent Oscillatory Flows in a 180° Curved Duct with a Square Sectional by using a LDV)

  • 윤석주;이행남;손현철
    • 설비공학논문집
    • /
    • 제27권7호
    • /
    • pp.344-353
    • /
    • 2015
  • In the present study the characteristics of turbulent oscillatory flows in a square-sectional $180^{\circ}$curved duct were investigated experimentally. A series of experiments for air flow were conducted to measure axial velocity profiles, secondary flow velocity profiles and pressure distributions. The measurements were made by a Laser Doppler Velocimeter (LDV) system with a data acquisition and processing system which includes Rotating Machinery Resolve (RMR) and PHASE software. The results from the experiment are summarized as follows. (1) The maximum velocity moved toward the outer wall from the region of a bend angle of $30^{\circ}$. The velocity distribution had a positive value extended over the total phase in the region of a bend angle of $150^{\circ}$. (2) Secondary flows were generally proportional to the velocity of the main flow. The intensity of the secondary flow was about 25% as much as that in the axial direction. (3) Pressure distributions were effects of the oscillatory Dean number and respective region.

Calculation of Turbulent Flows around a Submarine for the Prediction of Hydrodynamic Performance

  • Kim, Jin;Park, Il-Ryong;Van, Suak-Ho;Kim, Wu-Joan
    • Journal of Ship and Ocean Technology
    • /
    • 제7권4호
    • /
    • pp.16-31
    • /
    • 2003
  • The finite volume based multi-block RANS code, WAVIS developed at KRISO, is used to simulate the turbulent flows around a submarine with the realizable $\textsc{k}-\varepsilon$ turbulence model. RANS methods are verified and validated at the level of validation uncertainty 1.54% of the stagnation pressure coefficient for the solution of the turbulent flows around SUBOFF submarine model without appendages. Another SUBOFF configuration, axisymmetric body with four identical stem appendages, is also computed and validated with the experimental data of the nominal wake and hydrodynamic coefficients. The hydrodynamic forces and moments for SUBOFF model and a practical submarine are predicted at several drift and pitch angles. The computed results are in extremely good agreement with experimental data. Furthermore, it is noteworthy that all the computations at the present study were carried out in a PC and the CPU time required for 2.8 million grids was about 20 hours to get fully converged solution. The current study shows that CFD can be a very useful and cost effective tool for the prediction of the hydrodynamic performance of a submarine in the basic design stage.

정렬 및 비정렬 격자를 이용한 선체 주위 유동에서 TVD 기법이 공간 정확도에 미치는 영향 (Influence of TVD Schemes on the Spatial Accuracy of Turbulent Flows Around a Hull When Using Structured and Unstructured Grids)

  • 심민경;이상봉
    • 대한조선학회논문집
    • /
    • 제58권3호
    • /
    • pp.182-190
    • /
    • 2021
  • Computational simulations of turbulent flows around a model ship have been performed to investigate an influence of TVD schemes on the accuracy of advective terms associated with ship resistances. Several TVD schemes including upwind, second-order upwind, vanLeer, and QUICK as well as a nonTVD linear scheme were studied by examining temporal and spatial characteristics of accuracy transition in adjacent cells to the hull. Even though vanLeer scheme was the most accurate among TVD schemes in both structured and unstructured grid systems, the ratio of accuracy switch from 2nd order to 1st order in vanLeer scheme was considerable compared with the 2nd order linear scheme. Also, the accuracy transition was observed to be overally scattered in the unstructured grid while the accuracy transition in the structured grid appeared relatively clustered. It concluded that TVD schemes had to be carefully used in computational simulations of turbulent flows around a model ship due to the loss of accuracy despite its attraction of numerical stability.

오일러리언 접근법을 이용한 기류제트에 의한 가스-입자 2상 난류 유동특성 모델링 연구 (A Study on Numerical Modeling of Turbulent Gas-Particle Flows in a rectangular chamber Using Eulerian-Eulerian Method)

  • 김태국;민동호;윤경범;장희철
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2006년도 제33회 KOSCO SYMPOSIUM 논문집
    • /
    • pp.202-208
    • /
    • 2006
  • The purpose of this research is to model numerically the turbulent gas-particle flows in a rectangular chamber using Eulerian-Eulerian Method. A computer code using the ${\kappa}-{\varepsilon}-Ap$ two-phase turbulence model is developed for the numerical study. This code and the Eulerian multiphase model in FLUENT were used for the numerical simulations of the two-phase flow in a rectangular chamber. The numerical results calculated by the two different turbulent gas-particle codes have shown that the ${\kappa}-{\varepsilon}-Ap$ model results in a stronger diffusion of the flow momentum in the gas-particle turbulence interaction than the Eulerian multiphase model in FLUENT.

  • PDF

곡관덕트에 난류정상유동의 축방향 속도분포와 벽면전단응력분포 (Axial Direction Velocity and Wall shear Stress Distributions of Turbulent Steady Flow in a Curved Duct)

  • 이홍구;손현철;이행남;박길문
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제25권1호
    • /
    • pp.131-138
    • /
    • 2001
  • In this paper, an experimental investigation of characteristics of developing turbulent steady flows in a square-sectional $180^{\circ}$curved duct is presented. The experimental study using air in a square-sectional $180^{\circ}$ curved duct carryed out to measure axials direction velocity and wall shear stress distrbutions by using Laser Dopper Velocimeter(LDV) system with data acquistion and processing the system of FIND6260 softwere at 7 sections from the inlet($\phi=0^{\circ}$) to the outlet($\phi=180^{\circ}$) in $301^{\circ}$ intervals of a curved duct.

  • PDF

횡방향으로 회전하는 90도 정사각 단면 곡덕트에서 발달하는 난류유동의 측정 (Measurement of Developing Turbulent Flows in a 90-Degree Square Bend with Spanwise Rotation)

  • 김동철;최영돈;이건휘
    • 대한기계학회논문집B
    • /
    • 제27권2호
    • /
    • pp.206-214
    • /
    • 2003
  • Mean flow and turbulence properties of developing turbulent flows in a 90 degree square bend with spanwise rotation were measured by a hot-wire anemometer. A slanted wire is rotated into 6 orientations and the voltage outputs from them are combined to obtain the mean velocity and Reynolds stress components. The combinative effects of the centrifugal and Coriolis forces due to the curvature and the rotation of bend on the mean motion and turbulence structures are investigated experimentally. Results show that the two body forces can either enhance or counteract each other depending on the flow direction in the bend.

Sensitivity Analysis for the Navier-Stokes Equations with Two-Equation Turbulence Models

  • 김창성;김종암;노오현
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2000년도 춘계 학술대회논문집
    • /
    • pp.66-72
    • /
    • 2000
  • Aerodynamic sensitivity analysis is performed for the Navier-Stokes equations coupled with two-equation turbulence models using a discrete adjoint method and a direct differentiation method respectively. Like the mean flow equations, the turbulence model equations are also hand-differentiated to accurately calculate the sensitivity derivatives of flow quantities with respect to design variables in turbulent viscous flows. Both the direct differentiation code and the adjoint variable code adopt the same time integration scheme with the flow solver to efficiently solve the differentiated equations. The sensitivity codes are then compared with the flow solver in terms of solution accuracy, computing time and computer memory requirements. The sensitivity derivatives obtained from the sensitivity codes with different turbulence models are compared with each other. Using two-equation turbulence models, it is observed that a usual assumption of constant turbulent eddy viscosity in adjoint methods may lead to seriously inaccurate results in highly turbulent flows.

  • PDF

일반 비직교좌표계를 사용하는 3차원 범용 유동해석 프로그램의 개발 (A Study on the Development of General Purpose Program for the Analysis of 3-D Fluid Flow by Using a General non-Orthogonal Grid System)

  • 허남건;조원국;김광호
    • 대한기계학회논문집
    • /
    • 제18권12호
    • /
    • pp.3345-3356
    • /
    • 1994
  • A general purpose program, TURBO-3D, for the analysis of 3-D fluid flow in complex geometry has been developed, which employs a standard $k-\varepsilon$ turbulence model and a general nonorthogonal grid system. For the purpose of verification of the program and testing the applicability, turbulent flows in an S-shaped diffuser and turbulent flows over an backward facing step are solved and compared with the earlier results. Comparison with the results by the STAR-CD program has been also made for the same flow configuration and grid structure. The agreements are excellent and hence the program has been verified. Since the present program is applicable only on limited flow phenomena and lacks the pre-and post processor, further improvements toward these directions are being made.

난류 혼합 대류유동에서 고 흡수, 방사하는 입자의 열 확산에 관한 연구 (Study on Thermophoresis of Highly Absorbing, Emitting Particles in Turbulent Mixed Convection Flows)

  • 여석준
    • 한국대기환경학회지
    • /
    • 제12권3호
    • /
    • pp.231-241
    • /
    • 1996
  • The effect of radiation and buoyancy on the thermophoresis phenomenon owing to the presence of highly absorbing, emitting particles (such as soot or pulverized coal) suspended in a two phase flow system was investigated numerically for a turbulent mixed convection flow. The analysis of conservation equations for a gas-particle flow system was performed on the basis of a two-fluid model from a continuum Eulerian viewpoint. The modified van Driest and Cebeci mixing length turbulence model was adopted in the anaylsis of turbulent flow. In addition, the P-1 approximation was used to evaluate the radiation heat transfer. As expected from the particle concentration and drift velocity distribution, the cumulative collection efficiency E (x) becomes larger when the buoyancy effect increases (i.e. higher Grashof number), while smaller as the radiation effect increases (i.e. higher optical thickness).

  • PDF