• 제목/요약/키워드: Turbulent Flow Field Numerical Analysis

검색결과 127건 처리시간 0.021초

터널내 환기용 덕트 주위의 유체유동 해석 (Analysis of Fluid Flow around Ventilation Ducts inside a Vehicle Tunnel)

  • 서용권;이창우;최윤환
    • 터널과지하공간
    • /
    • 제6권1호
    • /
    • pp.64-68
    • /
    • 1996
  • Analyzed in this paper is fluid flow in the region near the exhaust and blower ports of the ventilation ducts inside a vehicle tunnel. Theoretical analysis shows that prediction of the energy loss in this region is important for designing the ventilation system. A finite-difference numerical model for the two-dimensional turbulent flow field was used to obtain the flow solution as well as the energy loss. It was shown that the blower-nozzle angle ($\beta$) had an important role in establishing both the pressure gradient and the energy loss, while the effect of the distance between two ports on them was not so significant.

  • PDF

가열 또는 냉각되는 수평웨이퍼 표면으로의 입자침착에 관한 해석 (Analysis of Particle Deposition onto a Heated or Cooled, Horizontal Free-Standing Wafer Surface)

  • 유경훈;오명도;명현국
    • 대한기계학회논문집
    • /
    • 제19권5호
    • /
    • pp.1319-1332
    • /
    • 1995
  • Numerical analysis was performed to characterize the particle deposition behavior on a horizontal free-standing wafer with thermophoretic effect under the turbulent flow field. A low Reynolds number k-.epsilon. turbulence model was used to analyze the turbulent flow field around the wafer, and the temperature field for the calculation of the thermophoretic effect was predicted from the energy equation introducing the eddy diffusivity concept. The deposition mechanisms considered were convection, diffusion, sedimentation, turbulence and thermophoresis. For both the upper and lower surfaces of the wafer, the averaged particle deposition velocities and their radial distributions were calculated and compared with the laminar flow results and available experimental data. It was shown by the calculated averaged particle deposition velocities on the upper surface of the wafer that the deposition-free zone, where the deposition velocite is lower than 10$^{-5}$ cm/s, exists between 0.096 .mu.m and 1.6 .mu.m through the influence of thermophoresis with positive temperature difference of 10 K between the wafer and the ambient air. As for the calsulated local deposition velocities, for small particle sizes d$_{p}$<0.05 .mu.m, the deposition velocity is higher at the center of the wafer than at the wafer edge, whereas for particle size of d$_{p}$ = 2.0 .mu.m the deposition takes place mainly on the inside area of the wafer. Finally, an approximate model for calculating the deposition velocities was recommended and the calculated deposition velocity results were compared with the present numerical solutions, those of Schmidt et al.'s model and the experimental data of Opiolka et al.. It is shown by the comparison that the results of the recommended model agree better with the numerical solutions and Opiolka et al.'s data than those of Schmidt's simple model.

표준 사이클론 집진기 내 유동특성에 관한 수치해석 (A Numerical Analysis on Flow Characteristic in a Standard Cyclone Dust Separator)

  • 이치우
    • 한국기계가공학회지
    • /
    • 제10권5호
    • /
    • pp.97-103
    • /
    • 2011
  • This study is numerical analysis on flow characteristic in a standard cyclone dust separator. The cyclone dust separator is widely used in a industrial applications as a method for dust removed from gases. In cyclone chamber, a very complex flow field is formed, involving the interaction between highly swirling velocity and turbulent field. Numerical analysis with computational fluid dynamics(CFD) was carried out to investigate the working fluid that flow into cyclone dust separator. Helical entry type was increasing flow rate compared with tangent entry type. And according to increasing pressure difference was increased fan power. But, helical entry type was high performance dust separator, in comparison with tangent entry type.

3차원 난류경계층 내에 존재하는 종방향 와동의 유동장 및 열전달 특성에 관한 수치해석(I) - Common Flow Down에 관하여 - (Numerical Analysis on the Flow Field and Heat Transfer Characteristics of Longitudinal Vortices in Turbulent Boundary Layer - On the Common Flow Down -)

  • 양장식
    • 설비공학논문집
    • /
    • 제17권9호
    • /
    • pp.789-798
    • /
    • 2005
  • This paper is a numerical study concerning how the interactions between a pair of the vortices effect flow field and heat transfer. The flow field (common flow down) behind a vortex generator is modeled by the information that is available from studies on a half-delta winglet. Also, the energy equation and the Reynolds-averaged Wavier-Stokes equation for three-dimensional turbulent flows, together with a two-layer turbulence model to resolve the near-wall flow, are solved by the method of AF-ADI. The present results predict that the boundary layer is thinned in the regions where the secondary flow is directed toward the wall and thickened where it Is directed away from the wall. Although some discrepancies are observed near the center of the vortex core, the overall performance of the computational model is found to be satisfactory.

전기자장에 의한 혼상류의 제어에 관한 수치해석 (Numerical Analysis on the Control of Particle-laden Flow Using Electromagnetic Field)

  • 남성원;신산신일
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 1996년도 춘계 학술대회논문집
    • /
    • pp.125-130
    • /
    • 1996
  • A numerical analysis is conducted on heat transfer and fluid flow of a plasma spraying process under the DC-RE hybrid electromagnetic field. Plasma flow is analyzed by using Eulerian approach and the equation of particle motion is simultaneously solved using a trajectory analysis with a lumped-heat-capacity model. Axisymmetric two dimensional electromagnetic fields governed by Maxwell's equations are solved based on a vector potential concept. The effects of the RF electromagnetic field on the temperature and velocity fields of the turbulent plasma flow are clarified. Control characteristics of phase changes and dispersed features of particles by applying the RF electromagnetic field are also clarified in an attempt to improve the plasma spraying process

  • PDF

Y형 세대별 정유량 밸브 개발에서의 CFD의 활용 (CFD for Y-type Constant Flowrate Valve Design)

  • 권우철;이병휘
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 2004년도 유체기계 연구개발 발표회 논문집
    • /
    • pp.488-491
    • /
    • 2004
  • Numerical analysis of the three dimensional turbulent flow field in a complex valve shape is carried out to confirm the flow field whether the designed valve shape is good or not. The simulation of the incompressible flow in a constant flowrate control valve is performed by using the commercial code, FLUENT/UNS 6.0. The results of flow field show the designed valve has some problems, therefore these will be good data for new valve design.

  • PDF

받음각을 갖는 축대칭 물체의 후류 유동 계산 (Computation of Wake Flow of an Axisymmetric Body at Incidence)

  • 김희택;이평국;김형태
    • 대한조선학회논문집
    • /
    • 제43권2호
    • /
    • pp.186-196
    • /
    • 2006
  • The turbulent wake flow of an axisymmetric body at incidence of $10.1^{\circ}$ is investigated by commericial CFD code, Fluent 6.2. Reynolds stress turbulence model with wall function is applied for the turbulent flow computation. For the grid generation, the Gridgen V15 is used. Numerical predictions are compared with experimental data for the validation. The computed results show goof agreements with the experimental measurements, implying that the CFD analysis is a useful and efficient tool for predicting turbulent flow characteristics of wake field of an axisymmetric body at incidence.

Numerical Analysis of the Three-Dimensional Wake Flow and Acoustic Field around a Circular Cylinder

  • Kim, Tae-Su;Kim, Jae-Soo
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제11권4호
    • /
    • pp.319-325
    • /
    • 2010
  • For decades, researchers have rigorously studied the characteristics of flow traveling around blunt objects in order to gain greater understanding of the flow around aircraft, vehicles or vessels. Many different types of flow exist, such as boundary layer flow, flow separation, laminar and turbulent flow, vortex and vortex shedding; such types are especially observed around circular cylinders. Vortex shedding around a circular cylinder exhibits a two-dimensional flow structure possessing a Reynolds number within the range of 47 and 180. As the Reynolds number increases, the Karman vortex changes into a three-dimensional flow structure. In this paper, a numerical analysis was performed examining the flow and aero-acoustic field characteristics around a circular cylinder using an optimized high-order compact scheme, which is a high order scheme. The analysis was conducted with a Reynolds number ranging between 300 and 1,000, which belongs to B-mode flow around a circular cylinder. For a B-mode Reynolds number, a proper spanwise length is analyzed in order to obtain the characteristics of three-dimensional flow. The numerical results of the Strouhal number as well as the lift and drag coefficients according to Reynolds numbers are coincident with the other experimental results. Basic research has been conducted studying the effects an unstable three-dimensional wake flow on an aero-acoustic field.

선회분류층형 석탄가스화기내의 비반응 난류 선회유동장 해석 (Numerical Analysis of Turbulent Swirling Cold-Flow in a Cyclonic Coal Gasifier)

  • 이진욱;나혜령;윤용승
    • 에너지공학
    • /
    • 제6권2호
    • /
    • pp.137-144
    • /
    • 1997
  • 선회분류층형 석탄가스화기내의 비반응 난류선회 유동장을 수치해석 기법을 이용하여 해석하였다. 우선 2차원해석과 3차원 해석과의 비교를 통하여 2차원화 가정의 주요변수인 등가틈새(equivalent slit)의 개념이 적절하며, 동시에 2차원 해석결과의 타당성을 입증하였다. 선회분류층형 가스화기내에서 가장 중요한 무차원수인 선회수의 변화에 따른 유동장의 특성변화를 주로 고찰하였다. 또한 유동장의 이론적인 선회수 및 등가틈새너비를 입력으로 이용한 전산해석을 수행하여. 미분탄반응이 존재할 경우의 유동장의 특성을 예측하여 보았다. 버너출구단면적의 크기 및 위치를 적절히 조절함으로써, 가스화기 내부에 미분탄반응에 적절한 유동장을 형성시킬 수 있음을 발견하였다.

  • PDF

격자크기에 따른 Gun식 가스버너의 스월유동에 대한 난류모델평가 (Evaluation of Turbulent Models on the Swirling Flow of a Gun-Type Gas Burner According to the Mesh Size)

  • 김장권;오석형
    • 동력기계공학회지
    • /
    • 제18권3호
    • /
    • pp.59-65
    • /
    • 2014
  • The computational fluid dynamics was carried out to evaluate turbulent models on the swirling flow of a gun-type gas burner(GTGB) according to the mesh size. The commercial SC/Tetra software was used for a steady-state, incompressible and three-dimensional numerical analysis. In consequence, the velocity magnitude from the exit of a GTGB and the flowrate predicted by the turbulent models of MP k-${\varepsilon}$, Realizable k-${\varepsilon}$ and RNG k-${\varepsilon}$ agree with the results measured by an experiment very well. Moreover, the turbulent kinetic energy predicted by the turbulent model of standard k-${\varepsilon}$ with mesh type C only agrees with the experimental result very well along the radial distance. On the other hand, the detailed prediction of the information of swirling flow field near the exit of a GTGB at least needs a CFD analysis using a fairly large-sized mesh such as a mesh type C.