• Title/Summary/Keyword: Turbulent Flow Characteristic

Search Result 107, Processing Time 0.028 seconds

Reynolds stress correction by data assimilation methods with physical constraints

  • Thomas Philibert;Andrea Ferrero;Angelo Iollo;Francesco Larocca
    • Advances in aircraft and spacecraft science
    • /
    • v.10 no.6
    • /
    • pp.521-543
    • /
    • 2023
  • Reynolds-averaged Navier-Stokes (RANS) models are extensively employed in industrial settings for the purpose of simulating intricate fluid flows. However, these models are subject to certain limitations. Notably, disparities persist in the Reynolds stresses when comparing the RANS model with high-fidelity data obtained from Direct Numerical Simulation (DNS) or experimental measurements. In this work we propose an approach to mitigate these discrepancies while retaining the favorable attributes of the Menter Shear Stress Transport (SST) model, such as its significantly lower computational expense compared to DNS simulations. This strategy entails incorporating an explicit algebraic model and employing a neural network to correct the turbulent characteristic time. The imposition of realizability constraints is investigated through the introduction of penalization terms. The assimilated Reynolds stress model demonstrates good predictive performance in both in-sample and out-of-sample flow configurations. This suggests that the model can effectively capture the turbulent characteristics of the flow and produce physically realistic predictions.

The Characteristic of Friction-Factor on Honeycomb Surfaces (Part II : Friction-Factor Jump Phenomenon) (허니콤 표면의 마찰계수 특성에 관한 연구 (Part 2 : 마찰계수 급상승현상에 관한 고찰))

  • 하태웅
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.6
    • /
    • pp.1439-1447
    • /
    • 1994
  • Test results of friction-factor for the flow of air in a narrow channel lined with various honeycomb geometries show that, generally, the friction-factor is nearly constant or slightly decreases as the Reynolds number(or Mach number) increases, a characteristic common to turbulent flow in pipes. However, in some test geometries this trend is remarkably different. The friction factor dramatically drops and then rises as the Mach number increases. This phenomenon can be characterized as a "friction-factor jump." Further investigations of the acoustic spectrum indicate that the "friction-factor jump" phenomenon is accompanied by an onset of a normal mode resonance excited coherent flow fluctuation structure, which occurs at Reynolds number of the order of $10^4$. New empirical friction-factor model for "friction-factor jump" cases is developed as a function of Mach number and local pressure.ach number and local pressure.

Fluctuating lift and drag acting on a 5:1 rectangular cylinder in various turbulent flows

  • Yang, Yang;Li, Mingshui;Yang, Xiongwei
    • Wind and Structures
    • /
    • v.34 no.1
    • /
    • pp.137-149
    • /
    • 2022
  • In this paper, the fluctuating lift and drag forces on 5:1 rectangular cylinders with two different geometric scales in three turbulent flow-fields are investigated. The study is particularly focused on understanding the influence of the ratio of turbulence integral length scale to structure characteristic dimension (the length scale ratio). The results show that both fluctuating lift and drag forces are influenced by the length scale ratio. For the model with the larger length scale ratio, the corresponding fluctuating force coefficient is larger, while the spanwise correlation is weaker. However, the degree of influence of the length scale ratio on the two fluctuating forces are different. Compared to the fluctuating drag, the fluctuating lift is more sensitive to the variation of the length scale ratio. It is also found through spectral analysis that for the fluctuating lift, the change of length scale ratio mainly leads to the variation in the low frequency part of the loading, while the fluctuating drag generally follows the quasi-steady theory in the low frequency, and the slope of the drag spectrum at high frequencies changes with the length scale ratio. Then based on the experimental data, two empirical formulas considering the influence of length scale ratio are proposed for determining the lift and drag aerodynamic admittances of a 5:1 rectangular cylinder. Furthermore, a simple relationship is established to correlate the turbulence parameter with the fluctuating force coefficient, which could be used to predict the fluctuating force on a 5:1 rectangular cylinder under different parameter conditions.

The Structure of Three-dimensional Turbulent Flow Fields of a Cone Type Gas Swirl Burner (콘형 가스 스월버너의 3차원 난류 유동장 구조)

  • Kim, J.K.;Jeong, K.J.
    • Journal of Power System Engineering
    • /
    • v.5 no.2
    • /
    • pp.22-29
    • /
    • 2001
  • This paper represents axial mean velocity, turbulent kinetic energy and swirl number based on momentum flux measured in the X-Y plane and Y-Z plane respectively of a cone type gas swirl burner by using X-probe from the hot-wire anemometer system. This experiment is carried out at flow rates 350 and $450{\ell}/min$ respectively, which are equivalent to the combustion air flow rate necessary for heat release 15,000 kcal/hr in gas furnace, in the test section of a subsonic wind tunnel. Axial mean velocities and turbulent kinetic energies show that their maximum values exist centering around narrow slits situated radially on the edge of and in the forefront of a burner until $X/R{\fallingdotseq}1.5$, but they have a peculiar shape like a starfish diffusing and developing into inward and outward of a burner by means of the mixing between flows ejected from narrow slits, an inclination baffle plate and swirl vanes respectively according to downstream regions. Moreover, they show a relatively large value in the inner region of 0.5$S_m$ obtained by integration of velocity profiles shows a characteristic that has an inflection point composing of the maximum and minimum value until X/R<3, but shows close agreement with the geometric swirl number after a distance of X/R=3.

  • PDF

A Study on the Flow Characteristics of a Sleeve-Jointed Adjusting Piece (슬리브 이음된 조정관에서의 유동 특성에 관한 연구)

  • Lee, Chang-Yong;Cho, Dae-Hwan
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.27 no.1
    • /
    • pp.145-152
    • /
    • 2021
  • The purpose of this study was to determine the optimal distances between pipes to minimize the pressure loss and turbulent intensity. This was accomplished by investigating the distances between sleeve-jointed pipes and the flow changes in pipes based on variations in the Reynolds (Re) number when installing adjusting pieces for the pipes. When the thickness tp of the sleeve-jointed piping was fixed at 5 mm and the pipe lengths Lp were 10, 50, 100, and 200 mm, the correlations with the velocity of the sleeve-jointed part, pressure distribution, length of the reattachment point in the recirculation area, and Re number were analyzed. The flow characteristic of the sleeve-jointed part from a laminar to a turbulent flow region was determined by setting the Re range to 200 ≤ Re ≤ 5,000. This was done by utilizing Ansys Fluent 18.1, which is a commercial program. The enlargement and contraction ratios of the sleeve-jointed part were 1.2 and 0.83, respectively, and the turbulent intensity of the sleeve downstream edge and pressure change both increased as the Re number increased while Lp remained constant. The fact that the flow on the sleeve wall surface was disturbed by tp resulted in losses in velocity energy. Therefore, the edge of the sleeve-jointed part was also effected. When Lp was 10 mm or less, the turbulent intensity of the edge part did not change significantly as the Re number increased. The reattachment point in the recirculation area did not appear at Lp of 10 mm or less and was not affected by the vortex. In the case of 3,000 ≤ Re, the reattachment length of the wall surface of the sleeve-jointed part was nearly constant as Lp increased.

Performance Assessment of Turbulence Models for the Prediction of Tip Leakage Flow in an Axial-flow Turbomachinery (축류형 유체 기계에서 팁 누설 유동 해석을 위한 난류 모델 성능 비교)

  • Lee, Gong-Hee;Baek, Je-Hyun
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.2162-2167
    • /
    • 2003
  • It is well-known that high anisotropic characteristic of turbulent flow field is dominant inside tip leakage vortex. This anisotropic nature of turbulence invalidates the use of the conventional isotropic eddy viscosity turbulence model based on the Boussinesq assumption. In this study, to check whether an anisotropic turbulence model is superior to the isotropic ones or not, the results obtained from steady-state Reynolds averaged Navier-Stokes simulations based on the RNG ${\kappa}-{\varepsilon}$ and the Reynolds stress model in two test cases, such as a linear compressor cascade and a forward-swept axial-flow fan, are compared with experimental data. Through the comparative study of turbulence models, it is clearly shown that the Reynolds stress model, which can express the production term and body-force term induced by system rotation without any modeling, should be used to predict the complex tip leakage flow, including the locus of tip leakage vortex center, quantitatively.

  • PDF

Analysis on Performance of Axial Flow Fan for Outdoor Unit of Air-conditioner: Noise Characteristics (에어컨 실외기용 축류홴의 성능에 관한 연구: 소음 특성)

  • Kim, Yong-Hwan;Lee, Jang-Ho
    • The KSFM Journal of Fluid Machinery
    • /
    • v.13 no.5
    • /
    • pp.29-34
    • /
    • 2010
  • In this paper, aerodynamic noise of axial flow fans for outdoor unit of air-conditioner was analyzed by both experiment and numerical simulation. The three-dimensional incompressible turbulent flow was predicted by the commercial computational fluid dynamics code SC/Tetra, while the aeroacoustic noise of an axial flow fan was predicted by FlowNoise. Computations and experiments were performed with two types of axial flow fans, in which very different noise source distributions were presented. The results obtained from this study are expected to show the way to reduce the noise of axial flow fans in industrial applications.

A combination method to generate fluctuating boundary conditions for large eddy simulation

  • Wang, Dayang;Yu, X.J.;Zhou, Y.;Tse, K.T.
    • Wind and Structures
    • /
    • v.20 no.4
    • /
    • pp.579-607
    • /
    • 2015
  • A Combination Random Flow Generation (CRFG) technique for obtaining the fluctuating inflow boundary conditions for Large Eddy Simulation (LES) is proposed. The CRFG technique was developed by combining the typical RFG technique with a novel calculation of k and ${\varepsilon}$ to estimate the length- and time-scales (l, ${\tau}$) of the target fluctuating turbulence field used as the inflow boundary conditions. Through comparatively analyzing the CRFG technique and other existing numerical/experimental results, the CRFG technique was verified for the generation of turbulent wind velocity fields with prescribed turbulent statistics. Using the turbulent velocity fluctuations generated by the CRFG technique, a series of LESs were conducted to investigate the wind flow around S-, R-, L- and U-shaped building models. As the pressures of the models were also measured in wind tunnel tests, the validity of the LES, and the effectiveness of the inflow boundary generated by the CRFG techniques were evaluated through comparing the simulation results to the wind tunnel measurements. The comparison showed that the LES accurately and reliably simulates the wind-induced pressure distributions on the building surfaces, which indirectly validates the CRFG technique in generating realistic fluctuating wind velocities for use in the LES. In addition to the pressure distribution, the LES results were investigated in terms of wind velocity profiles around the building models to reveal the wind flow dynamics around bluff bodies. The LES results quantitatively showed the decay of the bluff body influence when the flow moves away from the building model.

A Large-scale Structural Mixing Model applied to Blowout of Turbulent Nonpremixed Jet Flames in a Cross Jet Flow (횡분류(流)(橫噴流)에서 난류 비예흔합 화염의 화염날림에 대한 거대 와(渦)구조 혼합 모텔 적용)

  • Lee, Kee-Man;Park, Jeong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.1
    • /
    • pp.133-140
    • /
    • 2002
  • This article presents an application of a large-scale structural mixing model(Broadwell et at. 1984) to the blowout of turbulent reacting cross flow jets. Experimental observations, therefore, aim to identify the existence of large-scale vortical structure exerting an important effect upon the flame stabilization. In the analysis of common stability curve, it is seen that the phenomenon of blowout are only related to the mixing time scale of the two flows. The most notable observation is that the blowout distance is traced at a fixed positions according to the velocity ratio at all times. Measurements of the lower blowout limits in the liftable flame are qualitatively in agreement with the blowout parameter $\xi$, proposed by Broadwell et al. Good agrement between the results calculated by a modified blowout parameter $\xi$'and the present experimental results confirms the important effect of large-scale structure in the stabilization feature of blowout.

Numerical Study on the Three-Dimensional Centrifugal Compressor Volute Flow (원심 압축기 벌류트 3차원 유동의 수치해석)

  • Yoon Ju-Sig;Park Ki-Cheol;Chang Keun-Shik;Bae Hwang
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.30 no.3 s.246
    • /
    • pp.222-229
    • /
    • 2006
  • Three dimensional turbulent flow in the scroll volute of centrifugal compressor has been numerically investigated in this paper by solving the Navier-Stokes equations and $\kappa-\varepsilon$ equation model. The computational grid for the flow field of the scroll volute has been constructed based on the multi-block grid concept, which is good to avoid the central grid singularity as well as to promote grid stretching toward the volute wall. Numerical result has been obtained for both the two- and three- dimensions. For the latter flow, result of the scroll volute flow is compared with that of the straight conical volute. This comparison has sorted out the characteristic features of the three-dimensional scroll-type volute flow of centrifugal compressor.