• Title/Summary/Keyword: Turbulent Flame

Search Result 425, Processing Time 0.027 seconds

Study on the Turbulent Edge Propagation Speed of a Lifted Diffusion Flame in Turbulent Mixing Layer (난류 혼합층 확산화염에서 부상선단의 난류전파속도에 대한 연구)

  • Kim, Jun-Hong;Chung, S.H.;Ahn, K.Y.;Kim, J.S.
    • 한국연소학회:학술대회논문집
    • /
    • 2004.11a
    • /
    • pp.55-61
    • /
    • 2004
  • Leading front of a lifted diffusion flame in turbulent mixing layer was investigated in order to find a appropriate definition of the turbulent edge propagation speed. The turbulent lifted diffusion flame was simulated by employing the flame hole dynamics combined with level-set method which yields a temporally evolving turbulent extinction process. By tracing the leading front locations of the temporal flame edges, temporal variations of the liftoff height, local flow velocity, and edge propagation speed at the leading front were investigated and they demonstrated the flame-stabilization condition of the turbulent lifted flame. Finally, a turbulent edge propagation speed was defined and its temporal variation from the simulation was discussed.

  • PDF

Flame Hole Dynamics Model of a Diffusion Flame in Turbulent Mixing Layer (난류 혼합층에서 확산화염에 대한 flame hole dynamics 모델)

  • Kim, Jun-Hong;Chung, S.H.;Ahn, K.Y.;Kim, J.S.
    • Journal of the Korean Society of Combustion
    • /
    • v.8 no.3
    • /
    • pp.15-23
    • /
    • 2003
  • Partial quenching structure of turbulent diffusion flames in a turbulent mixing layer is investigated by the method of flame hole dynamics in order to develop a prediction model for turbulent flame lift off. The essence of flame hole dynamics is derivation of the random walk mapping, from the flame-edge theory, which governs expansion or contraction of flame holes initially created by local quenching events. The numerical simulation for flame hole dynamics is carried out in two stages. First, a direct numerical simulation is performed for constant-density fuel-air channel mixing layer to obtain the turbulent flow and mixing fields, from which a time series of two dimensional scalar dissipation rate array is extracted at a fixed virtual flame surface horizontally extending from the end of split plate to the downstream. Then, the Lagrangian simulation of the flame hole random walk mapping projected to the scalar dissipation rate array yields temporally evolving turbulent extinction process and its statistics on partial quenching characteristics. The statistical results exhibit that the chance of partial quenching is strongly influenced by the crossover scalar dissipation rate while almost unaffected by the iteration number of the mapping that can be regarded as a flame-edge speed.

  • PDF

Simulation of a Diffusion Flame in Turbulent Mixing Layer by the Flame Hole Dynamics Model with Level-Set Method (Level-Set 방법이 적용된 Flame Hole Dynamics 모델을 통한 난류 혼합층 확산화염 모사)

  • Kim, Jun-Hong;Chung, S.H.;Ahn, K.Y.;Kim, J.S.
    • 한국연소학회:학술대회논문집
    • /
    • 2004.06a
    • /
    • pp.102-111
    • /
    • 2004
  • Partial quenching structure of turbulent diffusion flames in a turbulent mixing layer is investigated by the method of flame hole dynamics to develope a prediction model for the turbulent lift off. The present study is specifically aimed to remedy the problem of the stiff transition of the conditioned partial burning probability across the crossover condition by adopting level-set method which describes propagating or retreating flame front with specified propagation speed. In light of the level-set simulations with two model problems for the propagation speed, the stabilizing conditions for a turbulent lifted flame are suggested. The flame hole dynamics combined with level-set method yields a temporally evolving turbulent extinction process and its partial quenching characteristics is compared with the results of the previous model employing the flame-hole random walk mapping. The probability to encounter reacting' state, conditioned with scalar dissipation rate, demonstrated that the conditional probability has a rather gradual transition across the crossover scalar dissipation rate in contrast to the stiff transition of resulted from the flame-hole random walk mapping and could be attributed to the finite response of the flame edge propagation.

  • PDF

Analysis of Flame Generated Turbulence for a Turbulent Premixed Flame with Zone Conditional Averaging (영역분할조건평균법을 이용한 난류예혼합화염내 난류운동에너지 생성에 관한 연구)

  • Im, Yong Hoon;Huh, Kang Yul
    • Journal of the Korean Society of Combustion
    • /
    • v.8 no.4
    • /
    • pp.15-23
    • /
    • 2003
  • The zone conditional two-fluid equations are derived and validated against DNS database of a premixed turbulent flame. The conditional statistics of major flow variables are investigated to understand the mechanism of flame generated turbulence. The flow field in burned zone shows substantially increased turbulent kinetic energy, which is highly anisotropic due to reaction kinematics across thin f1amelets. The transverse component may be larger than the axial component for a distributed pdf of the flamelet orientation angle, while the opposite occurs due to redistribution of turbulent kinetic energy and flamelet orientation normal to the flow at the end of a flame brush. The major source or sink terms of turbulent kinetic energy are the interfacial transfer by the mean reaction rate and the work terms by fluctuating pressure and velocity on a flame surface. Ad hoc modeling of some interfacial terms may be required for further application of the two-fluid model in turbulent combustion simulations.

  • PDF

Large Eddy Simulation of Turbulent Premixed Flame in Turbulent Channel Flow

  • Ko Sang-Cheol;Park Nam-Seob
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.8
    • /
    • pp.1240-1247
    • /
    • 2006
  • Large eddy simulation of turbulent premixed flame in turbulent channel flow is studied by using G-equation. A flamelet model for the premixed flame is combined with a dynamic subgrid combustion model for the filtered propagation flame speed. The objective of this work is to investigate the validity of the dynamic subgrid G-equation model to a complex turbulent premixed flame. The effect of model parameters of the dynamic sub grid G-equation on the turbulent flame speed is investigated. In order to consider quenching of laminar flames on the wall, wall-quenching damping function is employed in this calculation. In the present study, a constant density turbulent channel flow is used. The calculation results are evaluated by comparing with the DNS results of Bruneaux et al.

The Effect of N2 Dilution on the Flame Stabilization in a Non-Premixed Turbulent H2 Jet with Coaxial Air (질소 희석이 수소 난류확산화염의 화염안정성에 미치는 영향)

  • Oh, Jeong-Seog;Yoon, Young-Bin
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.33 no.7
    • /
    • pp.477-485
    • /
    • 2009
  • The study of nitrogen dilution effect on the flame stability was experimentally investigated in a non-premixed turbulent lifted hydrogen jet with coaxial air. Hydrogen gas was used as a fuel and coaxial air was used to make flame liftoff. Each of hydrogen and air were injected through axisymetric inner and outer nozzles ($d_F=3.65\;mm$ and $d_A=14.1\;mm$). And both fuel jet and coaxial air velocity were fixed as $u_F=200\;m/s$ and $u_A=16\;m/s$, while the mole fraction of nitrogen diluents gas was varied from 0.0 to 0.2 with 0.1 step. For the analysis of flame structure and the flame stabilization mechanism, the simultaneous measurement of PIV/OH PLIF laser diagnostics had been performed. The stabilization point was selected in the most upstream region of the flame base and defined as the point where the turbulent flame propagation velocity was equal to the axial component of local flow velocity. We found that the turbulent flame propagation velocity increased with the decrease of nitrogen mole fraction. We concluded that the turbulent flame propagation velocity was expressed as a function of turbulent intensity and axial strain rate, even though nitrogen diluents mole fraction was changed.

Propagation Characteristics of Turbulent Premixed Flames in Nearly Isotropic Turbulent Flows (등방성 난류 유동장내 예혼합 화염의 자유 전파속도에 관한 실험적 연구)

  • Lee, S.J.;Noh, D.S.
    • 한국연소학회:학술대회논문집
    • /
    • 2003.12a
    • /
    • pp.35-41
    • /
    • 2003
  • Propagation speeds of turbulent premixed flames have been measured in a pulsed-flame flow reactor which generates flames propagating in nearly isotropic turbulent flow field with U'/$S_L$ ranging from 1.2 to 5.3. The measurement involved a high-speed digital imaging at 1000 frames/second to capture the flame propagation motion. In addition to the flame speed measurements, flame perimeter ratio was measured for comparison. The observed flame propagation speed is high ranging from 5 to 20 times the laminar flame speed for the range of U'/$S_L$. The flames observed at extreme equivalence ratios exhibit intermittent propagation in that only a small fraction of ignited flame kernel resulted in full propagation of the flame. Also, at low equivalence ratios the flame speed decreased substantially even at high turbulence intensities.

  • PDF

An Experimental Study on the Turbulent Combustion Characteristics of Hydrocarbon Mixtures by Hydrogen Addition (수소를 첨가한 탄화수소 혼합기의 난류연소 특성에 관한 실험적 연구)

  • 김준효;한원희;키도히로유끼
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.6
    • /
    • pp.65-72
    • /
    • 2003
  • In order to clarify turbulent combustion characteristics of hydrocarbon mixtures by hydrogen addition, turbulent burning velocities in a constant volume vessel were measured for both lean and rich hydrocarbon mixtures. Moreover, the configuration characteristics of turbulent flame was investigated in the wrinkled laminar flame region. A laser tomography technique was used to obtain the images of turbulent flame, and quantitative analyses were performed. As a result, the characteristics of turbulent burning velocity was shown a distinct difference with the addition rate of hydrogen between lean and rich mixtures. On the other hand, the obtained tomograms showed that the surface area of turbulent flame depends almost only on the turbulence intensity.

Numerical Modeling for Turbulent Premixed Flames (난류 예혼합 화염장에 대한 수치 모델링)

  • Kang, Sung-Mo;Kim, Yomg-Mo
    • 한국연소학회:학술대회논문집
    • /
    • 2005.10a
    • /
    • pp.198-203
    • /
    • 2005
  • The LES-based level-set flamelet model has been applied to analyze the turbulent propane/air premixed bluff-body flame with a highly wrinkled flame fronts. The present study has been motivated to investigate the interaction between the flame front and turbulent eddies. Special emphasis is given to study the effect of G equation filtering treatment on the precise structure of turbulent premixed flames as well as the effect of sub-grid scale (SGS) eddies on the wrinkling of the flame surface. The level-set/flamelet model has been adopted to account for the effect of turbulence-flame interaction as well as to properly capture the flame front. Numerical results indicate that the present LES-based level-set flamelet approach has a capability to realistically simulate the highly non-stationary turbulent premixed flame.

  • PDF

Analysis of Flame Generated Turbulence for a Turbulent Premixed Flame with Zone Conditional Averaging (영역분할조건평균법에 근거한 난류예혼합화염내 난류운동에너지 생성에 관한 연구)

  • Im, Yong-Hoon;Huh, Kang-Yul
    • 한국연소학회:학술대회논문집
    • /
    • 2003.12a
    • /
    • pp.49-56
    • /
    • 2003
  • Mathematical formulation of the zone conditional two-fluid model is established to consider flame-generated turbulence in premixed turbulent combustion. The conditional statistics of major flow variables are investigated to understand the mechanism of flame generated turbulence. The flow field in burned zone shows substantially increased turbulent kinetic energy, which is highly anisotropic due to reaction kinematics across thin flamelets. The transverse component of rms velocities in burned zone become larger than axial component in the core of turbulent flame brush. The major source or sink terms of turbulent kinetic energy are the interfacial transfer by the mean reaction rate and the work terms by fluctuating pressure and velocity on a flame surface.

  • PDF