• 제목/요약/키워드: Turbulent Diffusion

검색결과 268건 처리시간 0.029초

수소 - 공기 난류확산화염 구조예측에 관한 연구 (The Predictions on the Structure of Tubulent Hydrogen-Air Diffusion Flame)

  • 신현동
    • 대한기계학회논문집
    • /
    • 제7권3호
    • /
    • pp.328-334
    • /
    • 1983
  • The turbulent hydrogen-air diffussion flame was studied experimentally and theoretically. Laser Doppler anemometer was used to measure the velocity field in the flame. Two mathematical models for the combustion reaction term, which are infinite rate model and finite rate to be derived eddy break-up model, were tested by comparing predictions with experimental data for coaxial turbulent diffusion flame. The agreement between the predictions and the data is, on the whole, very good in the case of employing the finite rate model rather than the infinite rate model. But, it was shown that the finite rate model was practically applicable to the predictions of the turbulent diffussion flame structure.

Numerical Modeling for Combustion and Soot Formation Processes in Turbulent Diffusion Flames

  • Kim, Hoo-Joong;Kim, Yong-Mo
    • Journal of Mechanical Science and Technology
    • /
    • 제16권1호
    • /
    • pp.116-124
    • /
    • 2002
  • In order to investigate the soot formation and oxidation processes, we employed the two variable approach and its source terms representing soot nucleation, coagulation, surface growth and oxidation. For the simulation of the taxi-symmetric turbulent reacting flows, the pressure-velocity coupling is handled by the pressure based finite volume method. We also employed laminar flamelet model to calculate the thermo-chemical properties and the proper soot source terms from the information of detailed chemical kinetic model. The numerical and physical models used in this study successfully predict the essential features of the combustion processes and soot formation characteristics in the reacting flow field.

중앙분공형 보염기 후류에 안정된 난류확산화염의 구조에 관한 연구(II) (A Study on the Structure of Turbulent Diffusion Flame Behind the Hollowed Flame Holder(II))

  • 강인구;이우섭;문중권;이도형
    • 동력기계공학회지
    • /
    • 제3권3호
    • /
    • pp.29-35
    • /
    • 1999
  • The purpose of study is to investigate the flame stability and structure of turbulent diffusion flame behind the hollowed flame holder, which is located on the waste gas coming out from the test furnace. PDFs and Power Spectra technique of fluctuating temperature and ion current measurement were needed for this purpose. We discussed that the three types of stabilized flames were found as the result of post study. In this paper, we established the stability mechanism near the flame holder.

  • PDF

벽면 충돌 난류 확산화염의 특성 (The Characteristics of Turbulent Diffusion Flame Impinging on the Wall)

  • 박용열;김호영
    • 대한기계학회논문집B
    • /
    • 제23권2호
    • /
    • pp.175-184
    • /
    • 1999
  • A theoretical study on the turbulent round jet diffusion flame impinging on the wall was carried out to predict the characteristics and structure of Impinging jet flame and heat transfer to the wall. Finite chemistry via Arrhenius equation and eddy dissipation model was adopted as a combustion model, and the Favre averaging and $k-{\varepsilon}$ model were Introduced In the theoretical modeling. The SIMPLE algorithm was applied to the calculation. All the transport properties were considered as the variable depending on the temperature and composition. For the parametric study, the distance from nozzle to impinging wall and Reynolds number at nozzle exit were chosen 88 the major parameters. As the results of the present study, the characteristics of flow fields, the distributions of main variables and each chemical species and the flame shapes were obtained. The heat transfer rate from the flame to the wall and the effective heating area were calculated to investigate the Influences of the major parameters on the heat transfer characteristics.

난류확산화염의 화염구조와 연소특성에 관한 실험적 연구 (An Experimental Study on Flame Structure and Combustion Characteristics of Turbulent Diffusion Flame(I))

  • 최병륜;장인갑;최경민
    • 대한기계학회논문집B
    • /
    • 제20권3호
    • /
    • pp.1028-1039
    • /
    • 1996
  • This study was focused on the examination of the flame structure and the combustion characteristics of diffusion flame which was formed the turbulent shear flow of a double coaxial air jet system. The shear flow was formed by the difference velocity of surrounding air jet(U$\_$s/) and center air jet (U$\_$c/). So experimental condition was divided S-type flame (.lambda. > 1) and C-type flame (.lambda. < 1) by velocity ratio .lambda. (=U$\_$s//U$\_$c/). For examination of the flame structure and the combustion characteristics in diffusion flame, coherent structure was observed in flame by schlieren photograph method. We measured fluctuating temperature and ion current simultaneously and accomplished the statistical analysis of its. According to schlieren photograph, the flame was stabilized in the rim of the direction of lower velocity air jet, coherent eddy was produced and developed by higher velocity air jet. The statistical data of fluctuating temperature and ion current was indicated that reaction was dominated by higher velocity air jet. The mixing state of burnt gas and non-burnt gas was distributed the wide area at Z = 100 mm of C-type flame.

난류강도가 수소 동축분류 난류 확산화염의 NOx 생성에 미치는 영향 (The Effect of Turbulence Intensity on the NOx Formation of Hydrogen Coaxial Jet Turbulent Diffusion Flames)

  • 한지웅;정영식;이창언
    • 대한기계학회논문집B
    • /
    • 제25권2호
    • /
    • pp.147-155
    • /
    • 2001
  • Experimental investigations were conducted for two hydrogen-nitrogen coaxial jet diffusion flames. A flame was a conventional coaxial jet diffusion flame and the other was a coaxial jet diffusion flame of which ambient air-jet turbulence was intensified. In this study, firstly two kinds of NOx measuring system were campared by using different convertors, secondly the NOx formation characteristics were investigated in order to examine the effect of turbulence intensity. In this study it is known that stainless convertor has some problem in the converting process from NO$_2$to NO in fuel rich region but molybdenum convertor can detect the amount of NOx correctly. The increase of turbulence intensity reduces the thermal NOx less than a half in our experiment and this effect is conspicuous near the nozzle. The conversion rate from NO to NO$_2$and the portion of NO$_2$among NOx are increased with turbulence intensity. These NOx measurements will help to understand the influences of turbulence intensity on NOx formation.

난류 확산화염의 계측 위치에 따른 화염자발광 특성에 대한 연구 (A Study on chemiluminescence characteristics of a turbulent flame for different measurement location)

  • 권민준;이창엽;김세원
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2014년도 제49회 KOSCO SYMPOSIUM 초록집
    • /
    • pp.219-222
    • /
    • 2014
  • The flame chemiluminescence is a good tracer of flame statement. In this study, the characteristics of flame chemiluminescence($OH^*$, $CH^*$, ${C_2}^*$) according different measuring locations using photomultiplier(PMT), spectrometer and CCD camera. Measurements are made for $OH^*$, $CH^*$, ${C_2}^*$ radicals in gas & light oil diffusion flames. At turbulent nonpremixed combustion mode, the equivalence ratio is varied. The experimental results showed that measuring location affects the result of flame chemiluminescence.

  • PDF

보염기에 의해 안정되는 난류확산화염의 연소특성에 관한 연구 (A Study on the Combustion Characteristics of Turbulent Diffusion Flame Stabilized by Bluff Body)

  • 안진근;송규근
    • 한국연소학회지
    • /
    • 제3권1호
    • /
    • pp.71-78
    • /
    • 1998
  • The flame stabilization and the combustion characteristics of diffusion flame formed in the wake of a cylindrical bluff body with fuel injection are studied. With the turbulence generator, the flame stability limits and ion currents were measured and analyzed. The results from this experimental study are summarized as follows. The region with highest average value of ion currents in the middle of flame is moved to the upstream side by the turbulent components of main stream. The flame mass with partially active reaction is moved fast for uniform flow and turbulence generator G3, but the flame mass with relatively slow reaction is moved slowly for turbulence generator G1. If the turbulence generator with strong turbulent component is installed, the turbulent time scale is increased with movement from main stream side to recirculation zone as well as the flame stability limits is deteriorated. Though the special dominant frequency is not appeared in the eddy which exists in flame, high frequency characteristics are appeared in uniform flow and turbulence generator G3, and low frequency characteristics are appeared in uniform flow, turbulence generator G3 and G1.

  • PDF

동축이중 공기분류중의 난류확산화염에 관한 실험적 연구 II (An Experimental Study on Turbulent Diffusion Flame in Double Coaxial Air Jets(II))

  • 조용대;최병윤
    • 대한기계학회논문집
    • /
    • 제14권5호
    • /
    • pp.1234-1243
    • /
    • 1990
  • 본 연구에서는 선회가 없는 중심기류와 주위기류의 난류 전단층에서 형성되는 난류확산화염의 천이영역(transition region)에 주목하여 전단층내의 혼합작용과 화염 구조와의 상호작용을 규명하기 위해 거시적 및 순간적인 화염구조에 대해 실험적으로 조사 연구한 결과를 보고한다.