• Title/Summary/Keyword: Turbulent Diffusion

Search Result 268, Processing Time 0.024 seconds

Large Eddy simulation using P2P1 finite element formulation (P2P1 유한요소를 이용한 LES)

  • Choi, Hyoung-Gwon;Nam, Young-Sok;Yoo, Jung-Yul
    • Proceedings of the KSME Conference
    • /
    • 2001.06e
    • /
    • pp.386-391
    • /
    • 2001
  • A finite element code based on P2P1 tetra element has been developed for the large eddy simulation (LES) of turbulent flows around a complex geometry. Fractional 4-step algorithm is employed to obtain time accurate solution since it is less expensive than the integrated formulation, in which the velocity and pressure fields are solved at the same time. Crank-Nicolson method is used for second order temporal discretization and Galerkin method is adopted for spatial discretization. For very high Reynolds number flows, which would require a formidable number of nodes to resolve the flow field, SUPG (Streamline Upwind Petrov-Galerkin) method is applied to the quadratic interpolation function for velocity variables, Noting that the calculation of intrinsic time scale is very complicated when using SUPG for quadratic tetra element of velocity variables, the present study uses a unique intrinsic time scale proposed by Codina et al. since it makes the present three-dimensional unstructured code much simpler in terms of implementing SUPG. In order to see the effect of numerical diffusion caused by using an upwind scheme (SUPG), those obtained from P2P1 Galerkin method and P2P1 Petrov-Galerkin approach are compared for the flow around a sphere at some Reynolds number. Smagorinsky model is adopted as subgrid scale models in the context of P2P1 finite element method. As a benchmark problem for code validation, turbulent flows around a sphere and a MIRA model have been studied at various Reynolds numbers.

  • PDF

Numerical Analysis of the Particle Dispersion by the Variation of the Velocity Ratio in a Mixing Layer (혼합층에서 속도비 변화에 따른 입자확산 유동해석)

  • Seo, Tae Won;Kim, Tae Jin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.31 no.3
    • /
    • pp.8-14
    • /
    • 2003
  • The particle dispersion in the turbulent mixing layer has been numerically investigated to clarify the effect of the velocity ratio in the large-scale vortical structures. In this study the LES with subgrid-scale model is employed. The Lagrangian method to predict the particle motion is applied. The particles of 10, 50, 150, 200${\mu}m$ in mean diameter were loaded into the origin of the mixing layer. It is shown that the characteristics of flow and growth rate are strongly dependent on the variation of the velocity ratio. It is also shown the relationship between the Stokes number and the particle dispersion. As a result, in the case of St~1 the particle dispersion is faster than the diffustion of the flow field while in the cases of both St<<1 and St>>1 it is shown that the particle dispersion in lower than the diffusion of the flow filed.

Dispersion Simulation of Hydrogen in Simple-shaped Offshore Plant (단순 형상 해양플랜트 내의 수소의 분산 시뮬레이션)

  • Seok, Jun;Heo, Jae-Kyung;Park, Jong-Chun
    • Journal of Ocean Engineering and Technology
    • /
    • v.27 no.5
    • /
    • pp.105-114
    • /
    • 2013
  • Lots of orders of special vessels and offshore plants for developing the resources in deepwater have been increased in recent. Because the most of accidents on those structures are caused by fire and explosion, many researchers have been investigated quantitatively to predict the cause and effect of fire and explosion based on both experiments and numerical simulations. The first step of the evaluation procedures leading to fire and explosion is to predict the dispersion of flammable or toxic material, in which the released material mixes with surrounding air and be diluted. In particular turbulent mixing, but density differences due to molecular weight or temperature as well as diffusion will contribute to the mixing. In the present paper, the numerical simulation of hydrogen dispersion inside a simple-shaped offshore structure was performed using a commercial CFD program, ANSYS-CFX. The simulated results for concentration of released hydrogen are compared to those of experiment and other simulation in Jordan et al.(2007). As a result, it is seen that the present simulation results are closer to the experiments than other simulation ones. Also it seems that the hydrogen dispersion is closely related to turbulent mixing and the selection of the turbulence model properly is significantly of importance to the reproduction of dispersion phenomena.

Simulation of Ammonia Reduction Effect by Hydroxylamine-oxidoreductase Enzyme Immobilized on the Surface of Water Pipe (수로관 표면 고정 히드록실아민-산화환원효소에 의한 암모니아 저감 효과 모사)

  • Lee, Sang-Ryong;Park, Jin-Won
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.28 no.4
    • /
    • pp.35-41
    • /
    • 2020
  • The immobilization of the hydroxylamine-oxidoreductase on the water channel surface was performed to investigate the efficacy of ammonia removal in turbulent flow. The reaction by this enzyme proceeds rapidly by converting hydroxylamine into nitrous acid. For the analysis of the effect, a dimensionless mass transfer governing equation was established with the physical properties based on room temperature. The ammonia diffusion coefficient in water and the kinematic viscosity coefficient of water were 2.45×10-9 ㎡/s and 1×10-6 ㎡/s, respectively. The distribution of ammonia concentration in the water was calculated with respect to the distance from the point at which exposure to ammonia began. The quantitative distribution with respect to the mixing depth was also found. Such a quantitative analysis can provide insight into whether the enzyme immobilized on the water channel surface can be effectively used for ammonia removal.

On-site Application of a Vehicle Tunnel Ventilation Simulator (도로터널 환기시뮬레이션 모델 현장적용 연구)

  • 이창우;김효규
    • Tunnel and Underground Space
    • /
    • v.11 no.4
    • /
    • pp.319-327
    • /
    • 2001
  • Introduction of new design tools has been required to optimally design and operate the ventilation system of long vehicle tunnels.. The demand has led to wide spread use of the simulation technique throughout the would to analysis the dynamic relationship among the variables associated with vehicle tunnel ventilation. This paper aims at performing on-site study at local tunnels to test the applicability of NETVEN, a simulation model vehicle tunnel ventilation. The study was carried out at four urban as well as highway tunnels model of vehicle tunnel ventilation. The study was carried out at four urban as well as highway tunnels employing different ventilation systems as well as traffic methods. There were some discrepancies sound between the simulation output and measurements and the following four factors are considered to mainly cause those disagreement. (1) The real situation shows distinctive transient and retarding characteristics with respect to air flow and contaminant dispersion, while ventilation forces are not steady-state and in particular those traffic and climatic variables show significant instantaneous variation. (3) Near the exit portal, the CO levels show bigger differences. The general trend is that data with higher CO concentrations carry bigger discrepancies. Turbulent diffusion is though to be the main reason for it and also contribute to the fact hat the highest CO concentrations are found at the locations somewhat inward, not at the exit portals. (4) Higher traffic rate results in higher discrepancies of ventilation velocity. Along with the exhaust characteristics, the vehicle aerodynamic characteristics need to be studied continuously in order to reduce the velocity disagreement.

  • PDF

A Study on the Ventilation Effects of the Shaft Development at a Local Limestone Mine (국내 석회석 광산 수갱 굴착에 의한 통기효과 분석 연구)

  • Lee, Changwoo;Nguyen, Van Duc;Kubuya, Kiro Rocky;Kim, Chang O
    • Tunnel and Underground Space
    • /
    • v.28 no.6
    • /
    • pp.609-619
    • /
    • 2018
  • This study was carried out at a local limestone mine to analyze the ventilation efficiency of the shaft equipped with a main fan. The results show that its ventilation efficiency is clearly verified for the natural as well as the mechanical ventilation. The airflow rate of $11.7m^3/s$ was induced by the natural ventilation force and the maximum quantity is almost same as the airflow rate estimated by monitoring the average temperatures in the upcast and downcast air columns. Meanwhile, the airflow rate exhausted by the main fan through the shaft was $20.3{\sim}24.8m^3/s$; variation of the quantity was caused by the upward shift of the mine ventilation characteristic curve due to the frequent movement of the equipment. This indicates efforts are required to reduce the ventilation resistance and raise the quantity supplied by the main fan. The turbulent diffusion coefficients along the 1912 m long airway from the portal to the shaft bottom was estimated to be $15m^2/s$ and $18m^2/s$. Since these higher coefficients imply that contaminants will be dispersed at a faster velocity than the airflow, prompt exhaust method should be planned for the effective air quality control. The ventilation shaft and main fan are definitely what local limestone mines inevitably need for better working environment and sustainable development.

The Interaction of Gaseous Diffusion Flames (기체확산 화염간의 상호작용)

  • 김호영;전철균
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.15 no.1
    • /
    • pp.355-365
    • /
    • 1991
  • New definition for the interaction of flames is introduced and interacting turbulent diffusion flames issuing from two rectangular nozzles are investigated on the basis of the definition. Theoretical study through numerical model is carried out and experiment for validation is conducted. The characteristics of interaction due to the variation of major parameters such as nozzle spacing, Reynolds number and nozzle aspect ratio are studied. Results show that strong interaction occurs for small nozzle spacing, small Reynolds number and large aspect ratio. In order of their magnitude, the intensity of interactions on the individual transport mechanism is momentum, heat and mass. It is also found that interaction makes flames longer, tilted and finally merged. Increase of velocities and temperature, decrease of oxygen concentration and depression of turbulence are occurred in the region between flames.

Suspension Properties of Silty Mud in Combined Wave-Current Flow (파-흐름의 공존장에서 실트질 점토의 정상특성)

  • 김차겸;이종섭
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.4 no.1
    • /
    • pp.26-33
    • /
    • 1992
  • Physical experiments were conducted to investigate the suspension properties of silty mud in combined wave-current flow. Suspension mass when there was opposing current was much higher than that when there was following current. It is due to the fact which strong turbulent flow in the bottom is developed in the opposing current but oscillatory flow effect decreases in the following current. Critical bed shear stress for suspension of silty mud in combined wave-current flow was deduced to be $\tau$$_{c}$~0.045 N/$m^2$. Formulas expressing the relation with initial suspension rate with bed shear stress, and the relation between the former and measured significant wave height were deduced. The relationship of initial suspension rate with bed shear stress was significantly scattered, but the relationship with measured significant wave height was reasonably good. When there is wave only, vertical diffusion coefficients of sediment were calculated from the vertical concentration gradients of suspended sediment when the concentration of suspended sediment approached to nearly equilibrium state. The diffusion coefficient increased exponentially with height from the bottom in the lower half of the flow depth but were nearly constant in the upper half of the flow depth.h.

  • PDF

Effect of Boundary Layer Generated on the fin surfaces of a Compact Heat Exchanger on the Heat Transfer and Pressure Drop Characteristics (컴팩트형 열교환기의 핀 표면에서 발생하는 경계층이 열교환기의 전열 및 압력강하 특성의 변화에 미치는 영향에 관한 수치해석적 연구)

  • KIM Chul-Ho;Jung Ji-Yong
    • Journal of computational fluids engineering
    • /
    • v.3 no.1
    • /
    • pp.82-88
    • /
    • 1998
  • As a par of a project related to the development of the design algorithm of a compact heat exchanger for the application of the electronic home appliances, the effect of the discreteness of the airflow boundary generated on the cooling fin surface on the heat transfer and pressure drop characteristics of the heat exchanger was studied numerically. In general, there are two critical design parameters seriously considered in the design of the heat exchanger; heat transfer rate(Q) and pressure drop coefficient(C/sub p/). Even though the higher heat transfer rate with lower pressure drop characteristics is required in a design of the heat exchanger, it is not an easy job to satisfy both conditions at the same time because these two parameters are phenomenally inversely proportional. To control the boundary layer thickness and its length along the streamline, the surface of the flat fin was modified to accelerate the heat transfer rate on the fin surface. To understand the effect of the discreted fin size(S/sub w/) and its location(S/sub h/) on the performance of the heat exchanger in the airflow field, the flat fin was modified as shown in Fig. 1. From this study, it was found that the smaller and more number of slits on the fin surface showed the higher energy diffusion rate. It means that the discreteness of the boundary layer is quite important on the heat transfer rate of the heat exchanger. On the other hand, if the fin surface configuration is very complex than needed, higher static pressure drop occurs than required in a system and it may be a reason of the induced aerodynamic noise in the heat exchanger.

  • PDF

Development of Highly-Resolved, Coupled Modelling System for Predicting Initial Stage of Oil Spill (유출유의 초기 확산예측을 위한 고해상도 결합모형 개발)

  • Son, Sangyoung;Lee, Chilwoo;Yoon, Hyun-Doug;Jung, Tae Hwa
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.29 no.4
    • /
    • pp.189-197
    • /
    • 2017
  • The development and application of accurate numerical models is essential to promptly respond to early stage of oil spill incidents occurring in nearshore area. In this study, the coupled modelling system was developed by integrating the advection-diffusion-transformation model for oil slick with the Boussinesq model, which incorporates non-linear, discrete, turbulent and rotational effects of wavy flows for accurate representation of nearshore hydrodynamics. The developed model examined its applicability through the application into real coastal region with topographical complexity and characteristics of the resulting flow originated from it. The highly-resolved, coupled model developed in this study is believed to assist in establishing the disaster prevention system that can prepare effectively for oil disasters under extreme ocean climate conditions and thus minimize industrial, economical, and environmental damages.