난류 수체에서 관성입자의 침강속도는 정지 수체에서보다 빠르고, 그 침강속도의 증가비율은 입자의 관성력과 난류의 길이 스케일에 큰 영향을 받는다고 알려져 있다(Wang and Maxey, 1993; Yang and Shy, 2003; Wang et al., 2018). 본 연구에서는 개수로 흐름에서 난류의 영향을 받는 관성입자의 침강속도를 측정하고, 정지 상태의 침강속도에 대한 침강속도의 증가비율과 난류 인자의연관성에 대해 조사하였다. 실험에 사용된 관성입자는 비중 1.35, 직경 300 ㎛에서 2000 ㎛까지의 구형 플라스틱(PE; polyethylene) 입자이며, 해당 입자들의 침강속도는 PTV(particle tracking velocimetry) 방식을 통해 측정하였다. 그리고 PIV(particle image velocimetry) 기법을 통해, 개수로 흐름의 난류 에너지 소산율(energy dissipation rate, ϵ)과 그에 따른 Kolomogorov 길이 스케일을 측정하였다. 실험 결과, 모든 직경 조건에서 플라스틱 입자는 난류 흐름에서의 침강속도가 정지 수체에서의 침강속도보다 빠름을 보였으며, 그 비율은 입자 직경이 난류의 길이 스케일과 유사하거나 작아질 때 큰 폭으로 증가하는 것을 확인하였다. 또한 유체 내에서의 관성입자의 거동에 대한 이론식과 비교하여 관성입자의 침강에 미치는 여러 힘들의 상대적 관계를 파악하였다. 본 연구의 결과는 자연 수체에서 미세플라스틱의 거동을 이해하는데 도움이 될 것으로 기대된다.
A new surface shape of an internal cooling passage which largely reduces the pressure drop and enhances the surface heat transfer is proposed in the present study. The surface shape of the cooling passage is consisted of the concave dimple and the riblet inside the dimple which is protruded along the stream-wise direction. Direct Numerical Simulation (DNS) for the fully developed turbulent flow and thermal fields in the cooling passage is conducted. The numerical simulations for five different surface shapes are conducted at the Reynolds number of 2800 based on the mean bulk velocity and channel height and Prandtl number of 0.71. The driving pressure gradient is adjusted to keep a constant mass flow rate in the x direction. The thermoaerodynamic performance for five different cases used in the present study was assessed in terms of the drag, Nusselt number, Fanning friction factor, volume and area goodness factor in the cooling passage. The value of maximum ratio of drag reduction is -22.86 %, and the value of maximum ratio of Nusselt number augmentation is 7.05% when the riblet angle is $60^{\circ}$. The remarkable point is that the ratio of Nusselt number augmentation has the positive value for the surface shapes which have over $45^{\circ}$ of the riblet angle. The maximum volume and area goodness factors are obtained when the riblet angle is $60^{\circ}$.
가로흐름이 존재하는 수역으로 방출되는 온배수 해석에 3가지 난류모형의 사용성 평가를 위해서 근역 2차원 수치모형을 개발하였다. 적용한 난류모형은 2-방정식 난류모형인 {{{{ { k}_{ } }}}}-$\varepsilon$ 및 {{{{ { k}_{ } }}}}-ι 난류모형과 {{{{ { k}_{ } }}}}-$\varepsilon$ 난류모형에 부력생성 항 및 난류 열 플럭스 항 결정을 위한 변동온도 평균자승항 및 이의 감쇠율에 대한 전달 방정식을 추가한 4-방정식 난류모형이다. 개발된 모형은 간단한 단면을 갖는 개수로 정류 경우에 대해 적용하였으며, 계산된 결과는 기존의 실험결과와 비교적 잘 일치하였다. 4-방정식 난류모형에 의한 결과가 2-방정식에 의한 결과보다 부력에 의한 횡방향의 중력확장을 잘 나타내었으며, 흐름 양상의 계산에는 3가지 경우 모두 유사하게 흐름을 재현함을 보였다.
A new surface shape of an internal cooling passage which largely reduces the pressure drop and enhances the surface heat transfer is proposed in the present study. The surface shape of the cooling passage is consisted of the concave dimple and the riblet inside the dimple which is protruded along the stream-wise direction. Direct Numerical Simulation (DNS) for the fully developed turbulent flow and thermal fields in the cooling passage is conducted. The Numerical simulations for the 5 different surface shapes are conducted at the Reynolds number of 2800 based on the mean bulk velocity and channel height and Prandtl number of 0.71. The driving pressure gradient is adjusted to keep a constant mass flow rate in the x direction. The thermo-aerodynamic performance for the 5 different cases used in the present study was assessed in terms of the drag, Nusselt number, Fanning friction factor, Volume and Area goodness factor in the cooling passage. The value of maximum ratio of drag reduction is -22.86 [%], and the value of maximum ratio of Nusselt number augmentation is 7.05 [%] when the riblet angle is $60^{\circ}$ (Case5). The remarkable point is that the ratio of Nusselt number augmentation has the positive value for the surface shapes which have over $45^{\circ}$ of the riblet angle. The maximum Volume and Area goodness factor are obtained when the riblet angle is $60^{\circ}$ (Case5).
장방형 단면의 개수로를 사용하여 정상 염수쇄기가 존재하는 흐름 장의 유동특성 을 파악하기 위한 실험을 수행하였다. 염수쇄기는 전체적으로 매우 안정하여 목시 관측이 용이하였으나, 유속의 측정과 계면파의 관측에는 가시화수법을 이용하였다. 연 직방향의 밀도변화로부터 정의되는 밀도계면은 목시관측에 의한 계면의 대략 0.5 cm정 도 아래에 존재하였으며, 밀도분포는 Hlomboe 모델을 잘 만족하였다. 계면층은 난류강 도 (turbulent intensity)가 매우 극심한 영역으로서 그 두께는 총평균 Richardson수 가 증가함에 따라 감소하는 경향을 보였으며 상층의 약 16% 정도의 크기를 가졌다. 수 로의 횡단면상의 유속분포는 수로측변에 의한 마찰의 영향을 잘 반영하였고, 상층내에 서는 Reyonolds수가 커질수록 연직방향의 유속분포의 균질성이 증가하는 반면 하층은 대체로 방물형(parabolic type)에 가까운 분포를 보였다. 염수쇄기를 쇄기장(L/SUB o/)에 따라 하구부(x/L/SUB o/< 0.3,단 x는 하구로부터의 거리), 중앙부(0.3 0.7) 의 세 구간으로 나누어 생각하는 경우, 연행계수는 중앙부에서 작고 하구부와 선단부에서 크게 나타났다. 또한 하구부나 중앙부는 계면이 대체로 안정하여 내부표면장력파가 팔생하거나 전파하는 반면, 선단부는 매우 불안정 하여 cusping ripple 또는 bursting ripple과 같은 계면파가 발생하였다. 염수쇄기의 형상은 거의 진선적으로, densimetric Froude 수와 Reynolds 수와는 독립이었다.
RANS 기반의 CFD 해석은 계산 효율성이 높아 실무 수리해석을 포함한 다양한 공학 분야에서 널리 적용되고 있으나 자유수면과 같이 이상유체흐름 해석에서 비물리적인 거동이 나타나는 문제가 오랫동안 제기되어 왔다. 일반적인 RANS 기반의 해석에서 적용되는 2 방정식 난류 모형은 단상유체를 대상으로 개발되어 유체 밀도의 급격한 변화가 발생하는 이상유체에서는 경계면에서 실제와 다른 높은 난류 에너지 생성을 모의한다. 최근 이를 해결하기 위해 개발된 방법 중의 하나인 부력 수정 난류 모형은 해안 분야에 적용되어 일부 적합성이 검증되었으나 개수로 흐름에 적용된 사례는 없다. 본 연구에서는 오픈 소스 프로그램인 OpenFoam의 VOF 기법을 기반으로 부력 수정 난류 모형의 적용성을 평가하였다. 등류 흐름 적용 결과에 의하면 부력 수정 k-𝜖 모형과 부력 수정 k-ω SST 모형이 자유수면 부근에서의 난류 에너지 저감 현상을 잘 모의함을 확인하였으며, 특히 부력 수정 k-ω SST 모형은 연직 유속 분포를 잘 모의함을 확인하였다. 또한 댐 붕괴 흐름에 적용하여 수면형의 변동이 크고 공동이 형성되는 경우에 대해 검토하였다. 모의 결과 부력 수정 난류 모형은 VOF 기법에 따라 상이한 결과를 나타내며 실험결과와 다른 비물리적인 거동을 나타내었다. 부력 수정 난류 모형이 수면이 안정적인 형태인 경우에는 적용성이 있으나 자유 수면의 급격한 변화가 발생하는 경우에 범용적으로 적용하기에는 여전히 한계가 있는 것으로 나타났다. 수면형이 급격하게 변화하거나 공동이 형성되는 흐름의 경우에는 난류 모형에 대한 적절한 보정이 필요한 것으로 판단된다.
KRISO 3600 TEU 컨테이너 모형선의 반류 유동을 PIV 기법을 이용하여 측정하였다. 본 실험은 시험부의 크기가 $1.0^W{\times}1.0^H{\times}4.5^L(m)$인 회류수조에서 수행되었는데, 선박 반류의 종단면과 횡단면에서 속도장을 측정함으로써 반류의 유동특성을 해석하였다. 실험시 횡단면 측정은 반류영역인 Station -0.5767, -1, -3의 3단면에서 수행하였고, 종단면의 경우 배의 중심 평면에서 우현방향으로 Z/(B/2)=0, 0.1, 0.2, 0.4, 0.6의 5단면에서 속도장을 측정하였다. 자유흐름속도는 $U_O=0.6m/s$로 고정하였는데, 수선간 길이 $L_{PP}=1.5m$에 기초한 레이놀즈수는 약 $Re=9{\times}10^5$이다. 각각의 측정 단면에서 순간속도장 400장을 구하고, 이들을 앙상블(ensemble) 평균하여 평균속도장, 난류운동 에너지 및 와도의 공간분포를 구하였다. 반류영역에는 서로 반대방향으로 회전하는 한 쌍의 longitudinal 보오텍스가 존재하며 수선 근처에 반대방향으로 회전하는 2차 와류가 발생하였다. 하류로 나아감에 따라 longitudinal 보오텍스와 2차 와류는 난류확산과 점성소산에 의하여 강도가 약화되지만 반류영역은 점차 확장된다.
식생된 개수로에서 식생의 영향을 파악하기 위해 k-$\in$ 난류 모형을 이용하여 수치모의를 하였다. 식생의 영향을 고려하기 위해 항력항을 추가한 지배방정식을 구성하였으며, 지배방정식을 해석하기 위하여 유한체적법을 사용하였다. 수치모의에서 구한 식생된 개수로의 흐름구조를 기존의 수리실험 결과와 비교하여 비교적 잘 일치함을 확인할 수 있다. 난류의 생성과 소멸을 수치모의한 결과, 부분구간 식생된 경우 식생높이 보다 낮은 구간에서는 후류에 의한 난류 생성이 지배적이며, 식생높이보다 높은 구간에서는 주로 마찰에 의한 난류 생성이 지배적임을 보였다. 기존의 연구들은 식생의 영향을 고려하여 개수로의 흐름을 연구한 예는 드물며, 현재까지 진행되어진 국내의 연구는 난류모형을 이용하여 식생된 개수로에서의 흐름 구조를 모의하였다. 따라서 난류흐름을 모의하는데 가장 보편적인 k-$\in$ 난류모형을 이용하여 식생된 개수로에서 수직방향으로의 흐름구조와 식생의 영향을 해석하는 것은 그 자체로도 의미 있는 연구이며, 앞으로의 환경수리 문제를 해결하기 위해 선행되어야 하는 연구이다. 식생된 개수로에서의 난류구조와 부유사 이동에 대한 식생의 영향을 비정상 1차원 수직모형으로 해석하였으며, 폐합문제를 위해 2-방정식인 k-$\in$ 난류모형을 사용하였다. k-$\in$ 난류모형에 식생에 의한 항력항을 더하여 지배방정식을 구성하였다. 수직방향에 대해 흐름방향 유속 u, 난류에너지 k, 그리고 난류에너지 소산율 $\in$의 분포를 구하고, 부유사에 대한 수송방정식을 풀었다. 식생된 개수로와 식생되지 않은 개수로에서의 유속분포, 난류강도, 레이놀즈 응력 분포와 난류의 생성과 소멸을 구하여 식생이 난류흐름에 미치는 영향을 분석하였다.
본 연구에서는 전단류 분산이 이송과 난류에 의한 확산의 결합에 의해 발생한다는 Taylor (1954)의 가정을 바탕으로 개념적 모형을 구성하고, 이를 3차원 개수로에 적용하여 오염물질의 혼합과정을 재현할 수 있는 시간분리 혼합모형(Time-split Mixing Model; TMM)을 개발하였다. 개발된 모형은 연산자 분리 기법(operator split method)과 유사하게 혼합과정을 종방향 혼합과 횡방향 혼합으로 분리하고, 유속 연직편차에 의한 농도분리과정과 난류확산에 의한 연직방향 혼합과정을 순차적으로 반복 계산함으로써 2차원 이송-분산을 재현한다. 수치모의 결과, 제안된 모형은 수로벽면에 의한 농도중첩 효과를 잘 반영하고 있으며, Taylor 구간 내에서 2차원 이송-분산 모형의 해석해와 거의 일치하고 있음을 확인하였다(Chatwin, 1970). 본 모형은 하상경사, 하폭 대 수심 비, 혼합시간 등의 변화에 따라 분산 정도를 달리 재현하고 있으며, 산정된 종분산계수는 Elder(1959)가 제안한 상수값과는 달리 혼합시간에 따라 변화하는 양상을 나타냈다. 횡분산계수의 경우, Sayre와 Chang(1968), Fischer 등(1979)이 실험을 통해 제시한 값과 유사한 범위를 나타냈다.
본 연구는 조도보정 블록수로에서의 체적밀집도를 정의하고, 평균유속(V)과 수리반경(R)의 곱인 VR, 블록 Reynolds수($Re^*$), 항력계수($\acute{C}_D$) 및 바닥전단특성의 바닥조도계수($n_b$)를 분석하여 조도계수(n)를 산정하였다. VR과 블록Reynolds수가 증가함에 따라 조도계수가 감소하여 일정함에 수렴하는 경험적인 양상을 확인하였다. 블록Reynolds수의 증가에 따라 항력계수는 감소하여 일정한 값에 수렴하는 것으로 나타났다. 블록Reynolds수가 큰 난류구간에서는 항력계수는 밀집도로 정의한 조도블록의 형상에 지배적임을 볼 수 있다. 정확한 조도계수의 산정을 위해서는 블록Reynolds수와 체적밀집도에 의한 상관식의 개발이 요구된다. n-VR, $\acute{C}_D-Re^*$, $n_b-\acute{C}_D$상관에 대한 관계곡선식을 제시하였다. 조도계수를 산정할 수 있는 블록Reynolds수와 체적밀집도와의 상관관계식을 제시하였다. 실험결과를 토대로 블록Reynolds수와 체적밀집도에 의한 조도 계수 산정식을 이용한 HEC-RAS의 수리특성 분석결과는 실험결과와 잘 일치함을 보여주어 산정한 조도계수 추정식의 적용성을 확인하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.