• 제목/요약/키워드: Turbulence modeling

검색결과 251건 처리시간 0.025초

3차원 PCB 채널내에서의 복사-혼합대류 열전달 특성 (Heat Transfer Characteristics of Radiation-Mixed Convection in a Three-Dimensional PCB Channel)

  • 이주형;박경우;박희용
    • 설비공학논문집
    • /
    • 제8권4호
    • /
    • pp.561-575
    • /
    • 1996
  • The interaction of turbulent mixed convection and surface radiation in a three-dimensional channel with the heated blocks is analyzed numerically. Two blocks are maintained at high temperature and the other bottom and horizontal walls are insulated. S-4 method is employed to calculate the effect of the radiative heat transfer. The low Reynolds number k-$\varepsilon$ model proposed by Launder and Sharma is used to estimate the turbulent influence on the heat transfer enhancement. From above modeling, the effects of various channel specifications on the flow and heat transfer characteristics are investigated. The variables used for the present study are Reynolds number, block spacing, the channel height spacing for block and the emissivity. Average Nusselt numbers along the block surfaces are correlated and presented in terms of Reynolds number, emissivity and dimensionless geometric parameters. For the range of conditions in this study, average Nusselt numbers along the block surfaces are strongly influenced by the Reynolds numbers and channel height spacing for block but weakly influenced by the block spacing and the emissivity of the adiabatic walls.

  • PDF

IMAGING NON-THERMAL X-RAY EMISSION FROM GALAXY CLUSTERS: RESULTS AND IMPLICATIONS

  • HENRIKSEN MARK;HUDSON DANNY
    • 천문학회지
    • /
    • 제37권5호
    • /
    • pp.299-305
    • /
    • 2004
  • We find evidence of a hard X-ray excess above the thermal emission in two cool clusters (Abell 1750 and IC 1262) and a soft excess in two hot clusters (Abell 754 and Abell 2163). Our modeling shows that the excess components in Abell 1750, IC 1262, and Abell 2163 are best fit by a steep power law indicative of a significant non-thermal component. In the case of Abell 754, the excess emission is thermal, 1 ke V emission. We analyze the dynamical state of each cluster and find evidence of an ongoing or recent merger in all four clusters. In the case of Abell 2163, the detected, steep spectrum, non-thermal X-ray emission is shown to be associated with the weak merger shock seen in the temperature map. However, this shock is not able to produce the flatter spectrum radio halo which we attribute to post-shock turbulence. In Abell 1750 and IC 1262, the shocked gas appears to be spatially correlated with non-thermal emission suggesting cosmic-ray acceleration at the shock front.

수중익 주위의 2차원 비정상 공동 현상 해석 (Numerical Simulation of Unsteady Cavitating Flow Around 2D Hydrofoil)

  • 이세영;박수형;이창진
    • 대한기계학회논문집B
    • /
    • 제31권8호
    • /
    • pp.653-662
    • /
    • 2007
  • Due to the difficulty raised from the coupling of cavitation modeling with turbulent flow, numerical simulation for two phase flow remains one of the challenging issues in the society. This research focuses on the development of numerical code to deal with incompressible two phase flow around 2D hydrofoil by combing the cavitation model suggested by Kunz et al. with $k-{\varepsilon}$ turbulent model. The simulation results are compared to experimental data to verify the validity of the developed code. Also, the comparison of the calculation results is made with LES results to evaluate the capability of $k-{\varepsilon}$ turbulence model. The calculation results show very good agreement with experimental observations even though this code can not grasp the small scaled bubbles in the calculation wheres LES can hold the real physics. This code will be extended to 3D compressible two phase flow for the study on the fluid dynamics in the inducers and impellers.

반대방향 충돌제트에 의한 원형 챔버 내 혼합거동에 대한 전산가시화 (Numerical visualization of mixing in a circular chamber by two opposite impinging jets)

  • 하미드 카바시안;김영우;이인범;한범정;정용채;김경천
    • 한국가시화정보학회지
    • /
    • 제14권3호
    • /
    • pp.32-37
    • /
    • 2016
  • In this study, the mixing process of two distinct flow is numerically investigated. Two flow with different physical properties (resin and hardener) are mixed through the opposing mixing jets. At a high pressure mixing process, the high speed flow is provided by two in-line nozzles. In the case of numerical modeling, Reynolds-Averaged Navier-Stokes Equations (RANS) is conducted to model the flow pattern inside the chamber. Additionally, SST k-omega turbulence model is selected to predict the kinetic energy of flow in impingement zone. The results show that mixing of two distinct flows would be efficient if the velocity of jet is high enough and nozzle diameter is a predominant parameter. Also, this velocity would create higher shear stress between two distinct flows which increases the mixing quality as well as strength of formed vortices. Eventually, the histogram of concentration fraction of resin is examined in order to show the quality of mixing and the range of concentration fractions in the output of chamber.

스테이터-로터 상호간섭 및 점성효과를 고려한 케스케이드의 유체유발 진동해석 (Flow-Induced Vibration Analysis for Cascades with Stator-Rotor Interaction and Viscosity Effect)

  • 오세원;김동현;김유성;박웅
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2006년도 추계학술대회논문집
    • /
    • pp.848-854
    • /
    • 2006
  • In this study, a computational analysis system has been developed in order to investigate flow-induced vibration(FIV) phenomenon for general stator-rotor cascade configurations. Relative movement of the rotor with respect to stator is reflected by modeling independent two computational domains. Fluid domains are modeled using the unstructured grid system with dynamic moving and local deforming methods. Unsteady, Reynolds-averaged Navier-Stokes equations with one equation Spalart-Allmaras and two-equation SST $k-\omega$ turbulence models are solved for unsteady flow problems. A fully implicit time marching scheme based on the Newmark direct integration method is used flow computing the coupled governing equations of the fluid-structure interaction problem. Detailed FIV responses for different flow conditions are presented with respect to time and vibration characteristics are also physically investigated in the time domain.

  • PDF

Numerical Investigation of Scattering from a Surface Dielectric Barrier Discharge Actuator under Atmospheric Pressure

  • Kim, Yuna;Kim, Sangin;Kim, Doo-Soo;Oh, Il-Young;Yook, Jong-Gwan
    • Journal of electromagnetic engineering and science
    • /
    • 제18권1호
    • /
    • pp.52-57
    • /
    • 2018
  • Surface dielectric barrier discharge (SDBD), which is widely used to control turbulence in aerodynamics, has a significant effect on the radar cross-section (RCS). A four-way linearly synthesized SDBD air plasma actuator is designed to bolster the plasma effects on electromagnetic waves. The diffraction angle is calculated to predict the RCS because of the periodic structure of staggered electrodes. The simplified plasma modeling is utilized to calculate the inhomogeneous surface plasma distribution. Monostatic RCS shows the diffraction in the plane perpendicular to the electrode array and the notable distortion by plasma. In comparison, the overall pattern is maintained in the parallel plane with minor plasma effects. The trends also appear in the bistatic RCS, which has a significant difference in the observation plane perpendicular to the electrodes. The peaks by Bragg's diffraction are shown, and the RCS is reduced by 10 dB in a certain range by the plasma effect. The diffraction caused by the actuator and the inhomogeneous air plasma should be considered in designing an SDBD actuator for a wide range of application.

냉각날개를 갖는 외전형 BLDC 모터의 열유동 해석 (Thermal and Flow Analysis of Outer-Rotor Type BLDC Motor with Cooling Blades)

  • 강수진;왕세명;심호경;이관수
    • 대한기계학회논문집B
    • /
    • 제31권9호
    • /
    • pp.772-779
    • /
    • 2007
  • In this paper, thermo-flow characteristics of an outer-rotor type BLDC motor are numerically analyzed using three-dimensional turbulence modeling. On the rotor of the BLDC motor, cooling blades and cooling holes are existed for the enhanced cooling performances. Rotating the blades and holes generates axial air flow streaming into inner rotor side and passing through stator slots, which cools down stator by forced convection. Operating tests are performed and the numerical temperature fields are found to be in good agreement with experimental results. A new design of the BLDC motor has also been developed and major design parameters such as the arrangement of cooling holes, the area of cooling holes and cooling blades, and the cooling blade angle, are analyzed for the enhanced convective heat transfer rate. It is found that the convective heat transfer rate of the new BLDC motor model is increased by about 8.1%, compared to that of the reference model.

유체/구조 연계 변형효과를 고려한 케스케이드의 성능평가 (Performance Evaluation of Cascade Considering Fluid/Structure Coupling Deformation)

  • 오세원;김동현;김유성;박웅
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2007년도 춘계학술대회논문집
    • /
    • pp.275-282
    • /
    • 2007
  • In this study, a fluid-structure interaction (FSI) analysis system has been developed in order to evaluate the turbine cascade performance with blade structural deformation effect. Relative movement of the rotor with respect to stator is reflected by modeling independent two computational domains. To consider the deformed position of rotor airfoil, dynamic moving grid method is applied. Reynolds-averaged Navier-Stokes equations with one equation Spalart-Allmaras and two-equation SST $k-{\varepsilon}$ turbulence models are solved to predict unsteady fluid dynamic loads. A fully implicit time marching scheme based on the Newmark direct integration method with high artificial damping is used to compute the fluid-structure interaction problem. Cascade performance evaluations for different elastic axis positions are presented and compared each other. It is importantly shown that the predicted aerodynamic performance considering structural deformation effect of blade can show some deviations compared to the data generally computed from rigid blade configurations and the position of elastic axis also tend to give sensitive effect.

  • PDF

저 스월 버너에서의 난류 예혼합 부상화염장의 해석 (Numerical Modeling of Turbulent Premixed Lifted Flames in Low-Swirl Burner)

  • 강성모;이정원;김용모;정재화;안달홍
    • 한국연소학회지
    • /
    • 제12권3호
    • /
    • pp.8-15
    • /
    • 2007
  • This study has numerically modelled the combustion processes of the turbulent swirling premixed lifted flames in the low-swirl burner (LSB). In these turbulent swirling premixed flames, the four tangentially-injected air jets induce the turbulent swirling flow which plays the crucial role to stabilize the turbulent lifted flame. In the present approach, the turbulence-chemistry interaction is represented by the level-set based flamelet model.. Two-dimensional and three-dimensional computations are made for the various swirl numbers and nozzle length. In terms of the centerline velocity profiles and flame liftoff heights, numerical results are compared with experimental data The three-dimensional approach yields the much better conformity with agreements with measurements without any analytic assumptions on the inlet swirl profiles, compared to the two-dimensional approach. Numerical clearly results indicate that the present level-set based flamelet approach has realistically simulated the. structure and stabilization mechanism of the turbulent swirling stoichiometric and lean-premixed lifted flames in the low-swirl burner.

  • PDF

이차분사노즐 작동 조건 변화에 따른 SITVC 성능해석 (Performance Analysis of SITVC System with Various Secondary Injection Conditions)

  • 배지열;송지운;김태환;조형희;배주찬
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2011년도 제37회 추계학술대회논문집
    • /
    • pp.116-121
    • /
    • 2011
  • SITVC 시스템의 이차분사 노즐 분사 조건 변화에 따른 시스템 성능 변화를 수치적으로 연구하였다. 해석에 사용된 형상은 3차원 종형 수축-팽창 노즐이고 측면에 8개의 이차분사 노즐을 가진다. 노즐 내부 유동은 전압이 70bar이며 300K의 cold flow로 가정하였다. 이차 유동의 유량 변화와 노즐 작동 조건 변화를 고려하였다. 상용코드인 Ansys Fluent v.13을 통해 해석하였고, 난류모델은 Spalart-Allmaras model(1- equation)를 사용하였다. 충격파의 수치적 진동을 막고 충격파의 불연속성을 잘 해석하기 위해 AUSM+ scheme을 사용하였다. Axial thrust, side force, system specific impulse ratio 와 같은 성능 변수를 사용해 시스템 성능을 평가하였다.

  • PDF