• 제목/요약/키워드: Turbulence model

검색결과 2,005건 처리시간 0.027초

Circular-to-Rectangular Transition Duct 내부의 3차원 유동장에 관한 연구 (Three-Dimensional Numerical Simulation within a Circular-to-Rectangular Transition Duct)

  • 조수용;정희택;손호재
    • 한국전산유체공학회지
    • /
    • 제3권2호
    • /
    • pp.9-16
    • /
    • 1998
  • Predictive behaviors by the extended k-${\varepsilon}$ turbulence model and the standard k-${\varepsilon}$ turbulence model are compared. Grid dependency is tested with the H-type grid as well as the O-type grid. Computations have been performed on a circular-to-rectangular transition duct. The Reynolds number is 390,000 based on the bulk velocity at the inlet. The computed axial velocity contours, transverse velocity profiles, static pressure contours, peripheral skin friction coefficient, peripheral wall static pressure distributions and turbulence kinetic energy have been compared with experimental results. The computed results than those obtained with the standard k-${\varepsilon}$ turbulence model. Comparing to the computed results obtained with the H-type grid and O-type grid, those with H-type grid seem to agree well with experimental results.

  • PDF

Mesh and turbulence model sensitivity analyses of computational fluid dynamic simulations of a 37M CANDU fuel bundle

  • Z. Lu;M.H.A. Piro;M.A. Christon
    • Nuclear Engineering and Technology
    • /
    • 제54권11호
    • /
    • pp.4296-4309
    • /
    • 2022
  • Mesh and turbulence model sensitivity analyses have been performed on computational fluid dynamics simulations executed with Hydra and ANSYS Fluent for a single CANadian Deuterium Uranium (CANDU) 37M nuclear fuel bundle placed within a standard pressure tube. The goal of this work was to perform a methodical analysis to objectively determine an appropriate mesh and to gauge the sensitivity of different turbulence models for CANDU subchannel flow under isothermal conditions. The boundary conditions and material properties are representative of normal operating conditions in a high-powered channel of the Darlington Nuclear Generating Station. Four meshes were generated with ANSYS Workbench Meshing, ranging from 22 to 84 million cells, and analyzed here to determine an appropriate level of mesh resolution and quality. Five turbulence models were compared in the turbulence model sensitivity analysis: standard k - ε, RNG k - ε, realizable k - ε, SST k - ω, and the Reynolds Stress Model. The intent of this work was to gain confidence in mesh generation and turbulence model selection of a single bundle to inform the decision making of subsequent investigations of an entire fuel channel containing a string of twelve bundles.

관류 익형송풍기의 유동해석에 대한 난류모델 및 수치도식의 영향에 관한 연구 (A Study on the Effects of Turbulence Model and Numerical Scheme on Analysis of the Flow through Airfoil Type Tubular Fan)

  • 문정주;서성진;김광용
    • 한국유체기계학회 논문집
    • /
    • 제6권1호
    • /
    • pp.23-29
    • /
    • 2003
  • Three-dimensional flow through a tubular centrifugal fan with airfoil type blades is analyzed, and the effects of turbulence model and numerical scheme on the results are investigated. Standard $k-{\epsilon}$ model and k - w model are tested as turbulence closures. The numerical schemes for convection terms, i.e., Upwind Differencing Scheme (UDS), Mass Weighted Skewed upstream differencing scheme (MWS), Linear Profile Skewed upstream differencing scheme (LPS), and Modified Linear Profile Skewed upstream differencing scheme (MLPS) are also tested, and the performances of these schemes coupled with two turbulence models are evaluated. The static pressure distributions are compared with experimental data obtained in this work, which shows that the $k-{\epsilon}$ model gives better results than the k-w model.

RNG k-$\varepsilon$ 난류모델을 이용한 유동박리 및 선회를 가지는 난류유동의 예측 (Prediction of Turbulent Flows with Separation and Swirl Using the RNG K-$\varepsilon$ Turbulence Model)

  • 김성구;오군섭;김용모;이창식
    • 한국자동차공학회논문집
    • /
    • 제4권5호
    • /
    • pp.119-129
    • /
    • 1996
  • This study is concerned with the critical evaluation of predicative capability of a k-$\varepsilon$ turbulence model using the Renormalization Group(RNG) theory. The present numerical model for solution of the Navier-Stokes System is based on the modified PISO algorithms. Computations have been performed with the RNG-based K-$\varepsilon$ model for the two-dimensional flow over a backward-facing step, a confined coaxial jet, and a swirling flow in a swirl combustor. Numerical results are compared with experimental data in terms of mean flow velocities, turbulent kinetic energy, and turbulent stresses. Numerical results clearly indicate that the RNG-based K-$\varepsilon$ turbulence model shows a significant improvement over a standard K-$\varepsilon$ model in predicting the turbulent flows with flow separation and swirl.

  • PDF

Investigation of surface pressures on CAARC tall building concerning effects of turbulence

  • Li, Yonggui;Yan, Jiahui;Chen, Xinzhong;Li, Qiusheng;Li, Yi
    • Wind and Structures
    • /
    • 제31권4호
    • /
    • pp.287-298
    • /
    • 2020
  • This paper presents an experimental investigation on the surface pressures on the CAARC standard tall building model concerning the effects of freestream turbulence. Two groups of incidence turbulence are generated in the wind tunnel experiment. The first group has an approximately constant turbulence intensity of 10.3% but different turbulence integral scale varying from 0.141 m to 0.599 m or from 0.93 to 5.88 in terms of scale ratio (turbulence integral scale to building dimension). The second group presents similar turbulence integral scale but different turbulence intensity ranging from 7.2% to 13.5%. The experimental results show that the mean pressure coefficients on about half of the axial length of the side faces near the leading edge slightly decrease as the turbulence integral scale ratio that is larger than 4.25 increases, but respond markedly to the changes in turbulence intensity. The root-mean-square (RMS) and peak pressure coefficients depend on both turbulence integral scale and intensity. The RMS pressure coefficients increase with turbulence integral scale and intensity. As the turbulence integral scale increases from 0.141 m to 0.599 m, the mean peak pressure coefficient increases by 7%, 20% and 32% at most on the windward, side faces and leeward of the building model, respectively. As the turbulence intensity increases from 7.2% to 13.5%, the mean value of peak pressure coefficient increases by 47%, 69% and 23% at most on windward, side faces and leeward, respectively. The values of cross-correlations of fluctuating pressures increase as the turbulence integral scale increases, but decrease as turbulence intensity increases in most cases.

PERFORMANCE ANALYSIS OF THE TURBULENCE MODELS FOR A TURBULENT FLOW IN A TRIANGULAR ROD BUNDLE

  • In W.K;Chun T.H;Myong H.K
    • 한국전산유체공학회지
    • /
    • 제10권1호
    • /
    • pp.63-66
    • /
    • 2005
  • A computational fluid dynamics(CFD) analysis has been made for fully developed turbulent flow in a triangular bare rod bundle with a pitch to diameter ratio (P/D) of 1.123. The nonlinear turbulence models predicted the turbulence-driven secondary flow in the triangular subchannel. The nonlinear quadratic κ-ε models by Speziale[1] and Myong-Kasagi[2] predicted turbulence structure in the rod bundle fairly well. The nonlinear quadratic and cubic k-ε models by Shih et al.[3] and Craft et al.[4] showed somewhat weaker anisotropic turbulence. The differential Reynolds stress model by Launder et al.[5} appeared to over predict the turbulence anisotropy in the rod bundle.

Density distributions and Power spectra of outflow-driven turbulence

  • Kim, Jongsoo;Moraghan, Anthony
    • 천문학회보
    • /
    • 제39권1호
    • /
    • pp.57.2-57.2
    • /
    • 2014
  • Protostellar jets and outflows are signatures of star formation and promising mechanisms for driving supersonic turbulence in molecular clouds. We quantify outflow-driven turbulence through three-dimensional numerical simulations using an isothermal version of the total variation diminishing code. We drive turbulence in real space using a simplified spherical outflow model, analyze the data through density probability distribution functions (PDFs), and investigate density and velocity power spectra. The real-space turbulence-driving method produces a negatively skewed density PDF possessing an enhanced tail on the low-density side. It deviates from the log-normal distributions typically obtained from Fourier-space turbulence driving at low densities, but can provide a good fit at high densities, particularly in terms of mass-weighted rather than volume-weighted density PDF. We find shallow density power-spectra of -1.2. It is attributed to spherical shocks of outflows themselves or shocks formed by the interaction of outflows. The total velocity power-spectrum is found to be -2.0, representative of the shock dominated Burger's turbulence model. Our density weighted velocity power spectrum is measured as -1.6, slightly less that the Kolmogorov scaling values found in previous works.

  • PDF

V2-F 난류 모델의 터보기계 유동 해석 적용 (Application of the V2-F Turbulence Model for Flow Analysis of Turbomachinery)

  • 박재현;손동경;김창현;백제현
    • 대한기계학회논문집B
    • /
    • 제40권2호
    • /
    • pp.75-83
    • /
    • 2016
  • 터보기계 내부 유동장은 역압력구배, 고속 유동으로 인해 매우 복잡하며, 이를 해석하기 위해 보다 정교한 난류 모델이 요구된다. 유동 해석을 위해 대수모델, 2-방정식 와점도 모델 등이 널리 사용되고 있으나, 매우 복잡한 유동을 모사하는데 어려움이 있다. 본 연구에서는 복잡한 유동에서의 예측성능이 우수하다고 알려진 Durbin의 V2-F난류 모델을 자체 개발 코드인 T-Flow에 적용하였으며, 채널 및 압축기 캐스캐이드 유동 해석 결과를 이용하여 난류 모델을 검증하였다. 또한 저속 압축기 동익 해석을 통해 터보기계 내부 유동에서의 적용 가능성을 판단하였다. 그 결과, V2-F난류 모델은 1-방정식, 2방정식 난류 모델보다 우수한 블레이드 표면 압력 분포 예측성능을 보였다.

Analysis of Empirical Constant of Eddy Viscosity by k-ε and RNG k-ε Turbulence Model in Wake Simulation

  • Park, Il Heum;Cho, Young Jun;Lee, Jong Sup
    • 해양환경안전학회지
    • /
    • 제25권3호
    • /
    • pp.344-353
    • /
    • 2019
  • The wakes behind a square cylinder were simulated using two-equation turbulence models, $k-{\varepsilon}$ and RNG $k-{\varepsilon}$ models. For comparisons between the model predictions and analytical solutions, we employed three skill assessments:, the correlation coefficient for the similarity of the wake shape, the error of maximum velocity difference (EMVD) of the accuracy of wake velocity, and the ratio of drag coefficient (RDC) for the flow patterns as in the authors' previous study. On the basis of the calculated results, we discussed the feasibility of each model for wake simulation and suggested a suitable value for an eddy viscosity related constant in each turbulence model. The $k-{\varepsilon}$ model underestimated the drag coefficient by over 40 %, and its performance was worse than that in the previous study with one-equation and mixing length models, resulting from the empirical constants in the ${\varepsilon}-equation$. In the RNG $k-{\varepsilon}$ model experiments, when an eddy viscosity related constant was six times higher than the suggested value, the model results were yielded good predictions compared with the analytical solutions. Then, the values of EMVD and RDC were 3.8 % and 3.2 %, respectively. The results of the turbulence model simulations indicated that the RNG $k-{\varepsilon}$ model results successfully represented wakes behind the square cylinder, and the mean error for all skill assessments was less than 4 %.

평균풍속 및 난류 예측을 위한 도심지 모델 (Urban Model for Mean Flow and Turbulence)

  • 김병구;이창훈;김석철;주석준;장동두;심우섭
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회B
    • /
    • pp.2923-2928
    • /
    • 2007
  • The study of model for velocity and turbulence within the urban canopy was carried out. To evaluate existing urban model we conducted wind tunnel experiment and large-eddy simulation (LES). Mean velocity profile and turbulence are measured within simple three different obstacle arrays. To obtain supplemental data and to verify morphological model large-eddy simulation was performed. Several methods have been used to achieve embodying the flow field in urban area. Recently, morphological method obtaining flow parameters from the statistical or physical representation of obstacle elements is a arising method. It was found that all morphological model, evaluated in this study, over predict the friction velocity, most sensitive one among the flow parameters. Velocity and turbulence in the urban canopy layer were improved by the correction using 'true' friction velocity.

  • PDF