• Title/Summary/Keyword: Turbulence model

Search Result 2,005, Processing Time 0.025 seconds

Two-way fluid-structure interaction simulation for steady-state vibration of a slender rod using URANS and LES turbulence models

  • Nazari, Tooraj;Rabiee, Ataollah;Kazeminejad, Hossein
    • Nuclear Engineering and Technology
    • /
    • v.51 no.2
    • /
    • pp.573-578
    • /
    • 2019
  • Anisotropic distribution of the turbulent kinetic energy and the near-field excitations are the main causes of the steady state Flow-Induced Vibration (FIV) which could lead to fretting wear damage in vertically arranged supported slender rods. In this article, a combined Computational Fluid Dynamics (CFD) and Computational Structural Mechanic (CSM) approach named two-way Fluid-Structure Interaction (FSI) is used to investigate the modal characteristics of a typical rod's vibration. Performance of an Unsteady Reynolds-Average Navier-Stokes (URANS) and Large Eddy Simulation (LES) turbulence models on asymmetric fluctuations of the flow field are investigated. Using the LES turbulence model, any large deformation damps into a weak oscillation which remains in the system. However, it is challenging to use LES in two-way FSI problems from fluid domain discretization point of view which is investigated in this article as the innovation. It is concluded that the near-wall meshes whiten the viscous sub-layer is of great importance to estimate the Root Mean Square (RMS) of FIV amplitude correctly as a significant fretting wear parameter otherwise it merely computes the frequency of FIV.

Effect of Ice accretion on the aerodynamic characteristics of wind turbine blades

  • Sundaresan, Aakhash;Arunvinthan, S.;Pasha, A.A.;Pillai, S. Nadaraja
    • Wind and Structures
    • /
    • v.32 no.3
    • /
    • pp.205-217
    • /
    • 2021
  • Cold regions with high air density and wind speed attract wind energy producers across the globe exhibiting its potential for wind exploitation. However, exposure of wind turbine blades to such cold conditions bring about devastating impacts like aerodynamic degradation, production loss and blade failures etc. A series of wind tunnel tests were performed to investigate the effect of icing on the aerodynamic properties of wind turbine blades. A baseline clean wing configuration along with four different ice accretion geometries were considered in this study. Aerodynamic force coefficients were obtained from the surface pressure measurements made over the test model using MPS4264 Simultaneous pressure scanner. 3D printed Ice templates featuring different ice geometries based on Icing Research Tunnel data is utilized. Aerodynamic characteristics of both the clean wing configuration and Ice accreted geometries were analysed over a wide range of angles of attack (α) ranging from 0° to 24° with an increment of 3° for three different Reynolds number in the order of 105. Results show a decrease in aerodynamic characteristics of the iced aerofoil when compared against the baseline clean wing configuration. The key flow field features such as point of separation, reattachment and formation of Laminar Separation Bubble (LSB) for different icing geometries and its influence on the aerodynamic characteristics are addressed. Additionally, attempts were made to understand the influence of Reynolds number on the iced-aerofoil aerodynamics.

Gamma-Ray and Neutrino Emissions from Starburst Galaxies

  • Ha, Ji-Hoon;Ryu, Dongsu;Kang, Hyesung
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.45 no.1
    • /
    • pp.37.1-37.1
    • /
    • 2020
  • Cosmic-ray protons (CRp) are efficiently produced at starburst galaxies (SBGs), where the star formation rate (SFR) rate is high. In this talk, we present estimates of gamma-ray and neutrino emissions from nearby SBGs, M82, NGC253, and Arp220. Inside the starburst nucleus (SBN), CRp are accelerated at supernova remnant (SNR) shocks as well as at stellar wind (SW) termination shocks, and their transport is governed by the advection due to starburst-driven wind and diffusion mediated by turbulence. We here model the momentum distributions of SNR and SW-produced CRp with single or a double power-law forms. We also employ two different diffusion models, where CRp are resonantly scattered off large-scale turbulence in SBN or self-excited waves driven by CR streaming instability. We then calculate gamma-ray/neutrino fluxes. The observed gamma-ray fluxes by Fermi-LAT, Veritas, and H.E.S.S are well reproduced with double power-law distribution for SNR-produced CRp and the CRp diffusion by self-excited turbulence. The estimated neutrino fluxes are <~10-3 of the atmospheric neutrino flux in the energy range of Eneutrino <~100 GeV and <~10-1 of the IceCube point source sensitivity in the energy range of Eneutrino >~60 TeV.

  • PDF

Measurement of Flow Field in a Ginseng Cleaner Model Using PIV (PIV에 의한 인삼세척기 모델 내부의 유동계측)

  • 송치성
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.25 no.1
    • /
    • pp.139-145
    • /
    • 2001
  • The objective of experimental study is to apply simultaneous measurement by PIV(Particle Image Velocimetry) to high_speed flow characteristics within ginseng cleaner model. Three different kinds of flow rate(15. 20, 27l/min) are selected as experimental condition. Optimized cross correlation identification to obtain velocity distribution, time-mean velocity distribution, velocity, profile, kinetic energy and turbulence intensity are represented quantitatively for the deeped understanding of the flow characteristics in a ginseng cleaner model.

  • PDF

A Lagrangian Stochastic Model for Turbulent Dispersion

  • Lee, Changhoon;Kim, Byunggu;Kim, Namhyun
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.12
    • /
    • pp.1683-1690
    • /
    • 2001
  • A Lagrangian stochastic model is adopted for the calculations of turbulent dispersion in turbulent channel flows. Dispersion of a fluid particle and relative dispersion between two particles released at the sane location are investigated and compared with the classical seating relations for homogeneous turbulence. The viscous effect is realized by adding a Browinian random walk to the calculation of the position of a particle. The near-wall accumulation of particles is examined.

  • PDF

SHM-based probabilistic representation of wind properties: statistical analysis and bivariate modeling

  • Ye, X.W.;Yuan, L.;Xi, P.S.;Liu, H.
    • Smart Structures and Systems
    • /
    • v.21 no.5
    • /
    • pp.591-600
    • /
    • 2018
  • The probabilistic characterization of wind field characteristics is a significant task for fatigue reliability assessment of long-span railway bridges in wind-prone regions. In consideration of the effect of wind direction, the stochastic properties of wind field should be represented by a bivariate statistical model of wind speed and direction. This paper presents the construction of the bivariate model of wind speed and direction at the site of a railway arch bridge by use of the long-term structural health monitoring (SHM) data. The wind characteristics are derived by analyzing the real-time wind monitoring data, such as the mean wind speed and direction, turbulence intensity, turbulence integral scale, and power spectral density. A sequential quadratic programming (SQP) algorithm-based finite mixture modeling method is proposed to formulate the joint distribution model of wind speed and direction. For the probability density function (PDF) of wind speed, a double-parameter Weibull distribution function is utilized, and a von Mises distribution function is applied to represent the PDF of wind direction. The SQP algorithm with multi-start points is used to estimate the parameters in the bivariate model, namely Weibull-von Mises mixture model. One-year wind monitoring data are selected to validate the effectiveness of the proposed modeling method. The optimal model is jointly evaluated by the Bayesian information criterion (BIC) and coefficient of determination, $R^2$. The obtained results indicate that the proposed SQP algorithm-based finite mixture modeling method can effectively establish the bivariate model of wind speed and direction. The established bivariate model of wind speed and direction will facilitate the wind-induced fatigue reliability assessment of long-span bridges.

A 3D CFD analysis of flow past a hipped roof with comparison to industrial building standards

  • Khalil, Khalid;Khan, Huzafa;Chahar, Divyansh;Townsend, Jamie F.;Rana, Zeeshan A.
    • Wind and Structures
    • /
    • v.34 no.6
    • /
    • pp.483-497
    • /
    • 2022
  • Three-dimensional (3D) computational fluid dynamics (CFD) analysis of flow around a hipped-roof building representative of UK inland conditions are conducted. Unsteady simulations are performed using three variations of the k-ϵ RANS turbulence model namely, the Standard, Realizable, and RNG models, and their predictive capability is measured against current European building standards. External pressure coefficients and wind loading are found through the BS 6399-2:1997 standard (obsolete) and the current European standards (BS EN 1991-1-4:2005 and A1:20101). The current European standard provides a more conservative wind loading estimate compared to its predecessor and the k-ϵ RNG model falls within 15% of the value predicted by the current standard. Surface shear stream-traces and Q-criterion were used to analyze the flow physics for each model. The RNG model predicts immediate flow separation leading to the creation of vortical structures on the hipped-roof along with a larger separation region. It is observed that the Realizable model predicts the side vortex to be a result of both the horseshoe vortex and the flow deflected off it. These model-specific aerodynamic features present the most disparity between building standards at leeward roof locations. Finally, pedestrian comfort and safety criteria are studied where the k-ϵ Standard model predicts the most ideal pedestrian conditions and the Realizable model yields the most conservative levels.

A multiphase flow modeling of gravity currents in a rectangular channel (사각형 수로에서 중력류의 다상흐름 수치모의)

  • Kim, Byungjoo;Paik, Joongcheol
    • Journal of Korea Water Resources Association
    • /
    • v.52 no.10
    • /
    • pp.697-706
    • /
    • 2019
  • A multiphase flow modeling approach equipped with a hybrid turbulence modeling method is applied to compute the gravity currents in a rectangular channel. The present multiphase solver considers the dense fluid, the less-dense ambient fluid and the air above free surface as three phases with separate flow equations for each phase. The turbulent effect is simulated by the IDDES (improved delayed detach eddy simulation), a hybrid RANS/LES, approach which resolves the turbulent flow away from the wall in the LES mode and models the near wall flow in RANS mode on moderately fine computational meshes. The numerical results show that the present model can successfully reproduce the gravity currents in terms of the propagation speed of the current heads and the emergence of large-scale Kelvin-Helmholtz type interfacial billows and their three dimensional break down into smaller turbulent structures, even on the relatively coarse mesh for wall-modeled RANS computation with low-Reynolds number turbulence model. The present solutions reveal that the modeling approach can capture the large-scale three dimensional behaviors of gravity current head accompanied by the lobe-and-cleft instability at affordable computational resources, which is comparable to the LES results obtained on much fine meshes. It demonstrates that the multiphase modeling method using the hybrid turbulence model can be a promising engineering solver for predicting the physical behaviors of gravity currents in natural environmental configurations.

Section Model Study on the Aerodynamic Behaviors of the Cable-Stayed Bridges with Two I-Type Girders Considering Structural Damping and Turbulence Intensity (2개의 I형 거더를 가진 사장교의 구조감쇠비 및 난류강도를 고려한 공기역학적 거동에 관한 단면모형실험 연구)

  • Cho, Jae-Young;Kim, Young-Min;Cho, Young-Rae;Lee, Hak-Eun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.6A
    • /
    • pp.1013-1022
    • /
    • 2006
  • Although the cable-stayed bridges with two I-type girders inherently do not have good aerodynamic characteristics, a lot of the bridges with this type girders are constructed in Korea recently because of an economical merit. This paper investigated the aerodynamic characteristics of the cable-stayed bridges with two I-type girders. Section model tests were conducted in order to investigate the aerodynamic behaviors of this section with varying of the angles of attack, turbulence intensity and damping ratios. Two deck section configurations with different torsional stiffness were studied under construction and after completion respectively. Three types of the fairings were investigated to improve the aerodynamic characteristics of the bridges. The result of this study showed that the traditional section model test in uniform flow estimates the aerodynamic behavior rather pessimistically. The wind induced responses of the bridges were severely varied in accordance with the turbulence intensity and the structural damping ratio. The proposed fairing reduced the magnitude of the vortex-shedding vibrations and buffeting responses. It also increased the wind speed at which flutter occurs. It is expected that these investigations would provide a lot of information for the design of the cable stayed bridges with two I-type girders regarding wind resistance.

Application of Non-hydrostatic Free Surface Model for Three-Dimensional Viscous Flows (비정수압 자유수면 모형의 3차원 점성 흐름에의 적용)

  • Choi, Doo-Yong
    • Journal of Korea Water Resources Association
    • /
    • v.45 no.4
    • /
    • pp.349-360
    • /
    • 2012
  • A horizontally curvilinear non-hydrostatic free surface model that was applicable to three-dimensional viscous flows was developed. The proposed model employed a top-layer equation to close kinematic free-surface boundary condition, and an isotropic k-${\varepsilon}$ model to close turbulence viscosity in the Reynolds averaged Navier-Stokes equation. The model solved the governing equations with a fractional step method, which solved intermediate velocities in the advection-diffusion step, and corrects these provisional velocities by accounting for source terms including pressure gradient and gravity acceleration. Numerical applications were implemented to the wind-driven currents in a two-dimensional closed basin, the flow in a steep-sided trench, and the flow in a strongly-curved channel accounting for secondary current by the centrifugal force. Through the numerical simulations, the model showed its capability that were in good agreement with experimental data with respect to free surface elevation, velocity, and turbulence characteristics.