• Title/Summary/Keyword: Turbulence model

Search Result 2,005, Processing Time 0.027 seconds

Wind pressures on different roof shapes of a finite height circular cylinder

  • Ozmen, Y.;Aksu, E.
    • Wind and Structures
    • /
    • v.24 no.1
    • /
    • pp.25-41
    • /
    • 2017
  • The effects of finite cylinder free end shape on the mean and fluctuating wind pressures were investigated experimentally and numerically by using three different roof shapes: flat, conical and hemispherical. The pressure distributions on the roofs and the side walls of the finite cylinders partially immersed in a simulated atmospheric boundary layer have been obtained for three different roof shapes. Realizable $k-{\varepsilon}$ turbulence model was used for numerical simulations. Change in roof shapes has caused significant differences on the pressure distributions. When compared the pressure distributions on the different roofs, it is seen from the results that hemispherical roof has the most critical pressure field among the others. It is found a good agreement between numerical and experimental results.

Navier-Stokes Computations of Supersonic Flow over Missile Afterbodies Containing a Centered Propulsive Jet (Navier-Stokes 방정식을 이용한 초음속 제트 추진 비행체 후방의 유동해석)

  • 윤병국;정명균
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.2
    • /
    • pp.356-368
    • /
    • 1992
  • The strongly interactive flow field near a missile afterbody containing a centered exhaust jet is numerically investigated. The thin shear layer and full formulation of compressible, Reynolds I averaged Navier-Stokes equations are solved. A time-dependent implicit numericals algorithm is used to obtain solution for a variety of flow conditions. Turbulence closure is implemented by the Baldwin-Lomax algebraic eddy viscosity model. An adaptive grid technique is adopted to resolve flow regimes with large gradients and to improve the accuracy and efficiency of the computation, Numerical results show good agreemement with experimental data in all regimes.

Numerical Analyses of Three-Dimensional Thermo-fluid flow through Mixing Vane in A Subchannel of Nuclear Reactor (원자로 부수로내 혼합날개를 지나는 삼차원 열유동 해석)

  • Choi, Sang-Chul;Kim, Kwang-Yong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.3
    • /
    • pp.311-318
    • /
    • 2003
  • The present work evaluates the effects of mixing vane shape on the flow structure and heat transfer downstream of mixing vane in a subchannel of fuel assembly. by obtaining velocity and pressure fields. turbulent intensity. flow-mixing factors. heat transfer coefficient and friction factor using three-dimensional RANS analysis. Four different shapes of mixing vane. which were designed by the authors were tested to evaluate the performances in enhancing the heat transfer. Standard k-$\varepsilon$ model is used as a turbulence closure model. and. periodic and symmetry conditions are set as boundary conditions. The flow blockage ratio is kept constant. but the twist angle of mixing vane is changed. The results with three turbulence models were compared with experimental data.

Numerical Study on Three-Dimensional Endwall Flow Characteristics within a Turbine Cascade Passage (터빈익렬내의 3차원 끝벽유동 특성에 대한 수치해석적 연구)

  • Myong Hyon Kook
    • Journal of computational fluids engineering
    • /
    • v.8 no.1
    • /
    • pp.8-15
    • /
    • 2003
  • Three-dimensional endwall flow within a linear cascade passage of high performance turbine blade is simulated with a 3-D Wavier-Stokes CFD code (MOSA3D), which is based on body-fitted coordinate system, pressure-correction and finite volume method. The endwall flow characteristics, including the development and generation of horseshoe vortex, passage vortex, etc. are clearly simulated, consistent with the generally known tendency. The effects of both turbulence model and convective differencing scheme on the prediction performance of endwall flow are systematically analyzed in the present paper. The convective scheme is found to have stronger effect than the turbulence model on the prediction performance of endwall flow. The present simulation result also indicates that the suction leg of the horseshoe vortex continues on the suction side until it reaches the trailing edge.

Streamline-Upwind Numerical Simulation of Two-Dimensional Confined Impinging Slot Jets (2차원 Confined 충돌 슬롯제트의 유선상류도식을 이용한 수치 해석)

  • Park, Tae-Hyun;Choi, Hyoung-Gwon;Yoo, Jung-Yul;Kim, Sang-Joon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.12
    • /
    • pp.1663-1673
    • /
    • 2002
  • In the present paper, flow and heat transfer characteristics of confined impinging slot jets have been numerically investigated using a SIMPLE-based segregated SUPG finite element method. For laminar jets, it is shown that the skin friction coefficient obtained from the present SUPG formulation approaches the grid-independent Galerkin solution inducing negligible false diffusion in the flow field when a moderate number of grid points are used. For turbulent jets, the k-$\omega$turbulence model is adopted. The streamwise mean velocity and the heat transfer coefficient respectively agree very well with existing experimental data within limited ranges of parameters.

A Two-dimensional Turbulence Model for the Thermal Discharge into Crossflow Field (가로흐름 수성으로 방출되는 2차원 온배수 난류모형)

  • Choi, Hung-Sik;Jung, Kyung-Tae;So, Jae-Kwi;Lee, Kil-Seong
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.5 no.2
    • /
    • pp.91-98
    • /
    • 1993
  • A two-dimensional turbulence model for the surface discharge of heated water into cross-flow field has been developed. The depth-averaged continuity, momentum and temperature equations, are solved by an efficient finite-difference procedure known as SIMPLE. Turbulent stresses and heat fluxes are determined from a depth-averaged version of the $textsc{k}$-$\varepsilon$ equation. Results of test run clearly demonstrate its effectiveness in handling strong turbulent phenomena in very shallow near-field region.

  • PDF

Numerical Simulation of the Flow Field inside a New 1 Ton/Day Entrained-Flow Gasifier in KIER

  • Li, Xiang-Yang;Choi, Young-Chan;Park, Tae-Jun
    • Proceedings of the Korea Society for Energy Engineering kosee Conference
    • /
    • 2000.04a
    • /
    • pp.43-50
    • /
    • 2000
  • The flow field of a 1 Ton/Day entrained-flow gasifier constructed in KIER was numerical simulate in this paper. The standard $k-{\varepsilon}$ turbulence model and simple procedure was used with the Primitive-Variable methods during computation. In order to find the influence factors of the flow field which may have great effects on coal gasification process inside gasifier, difference geometry parameters at various operating conditions were studied by simulation methods. The calculation results show that the basic shape of the flow field is still parabolic even the oxygen gas is injected from the off-axis position. There exist an obvious external recirculation zone with a length less than 1.0m and a small internal recirculation region nears the inlet part. The flow field inside the new gasifier is nearly similar as that of the old 0.5T/D gasifier at same position if the design of burner remains unchanged.

  • PDF

On the Assessment of Compressibility Effects of Two-Equation Turbulence Models for Supersonic Transition Flow with Flow Separation

  • Sung, Hong-Gye;Kim, Seong-Jin;Yeom, Hyo-Won;Heo, Jun-Young
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.14 no.4
    • /
    • pp.387-397
    • /
    • 2013
  • An assessment of two-equation turbulence models, the low Reynolds k-${\varepsilon}$ and k-${\omega}$ SST models, with the compressibility corrections proposed by Sarkar and Wilcox, has been performed. The compressibility models are evaluated by investigating transonic or supersonic flows, including the arc-bump, transonic diffuser, supersonic jet impingement, and unsteady supersonic diffuser. A unified implicit finite volume scheme, consisting of mass, momentum, and energy conservation equations, is used, and the results are compared with experimental data. The model accuracy is found to depend strongly on the flow separation behavior. An MPI (Message Passing Interface) parallel computing scheme is implemented.

Numerical predictions of the time-dependent temperature field for the 7th Cardington compartment fire test

  • Lopes, Antonio M.G.;Vaz, Gilberto C.;Santiago, Aldina
    • Steel and Composite Structures
    • /
    • v.5 no.6
    • /
    • pp.421-441
    • /
    • 2005
  • The present work reports on a numerical simulation of a compartment fire. The fire was modeled using a simplified approach, where combustion is simulated as a volumetric heat release. Computations were performed with the commercial code CFX 5.6. Radiation was modeled with a differential approximation (P1 model), while turbulence effects upon the mean gas flow were dealt with a SST turbulence model. Simulations were carried out using a transient approach, starting at the onset of ignition. Results are provided for the temperature field time evolution, thus allowing a direct comparison with the analytical and experimental data. The high spatial resolution available for the results proved to be of great utility for a more detailed analysis of the thermal impact on the steel structure.

Computation of Wake Flow of an Axisymmetric Body at Incidence (받음각을 갖는 축대칭 물체의 후류 유동 계산)

  • Kim, Hee-Taek;Lee, Pyoung-Kuk;Kim, Hyoung-Tae
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.43 no.2 s.146
    • /
    • pp.186-196
    • /
    • 2006
  • The turbulent wake flow of an axisymmetric body at incidence of $10.1^{\circ}$ is investigated by commericial CFD code, Fluent 6.2. Reynolds stress turbulence model with wall function is applied for the turbulent flow computation. For the grid generation, the Gridgen V15 is used. Numerical predictions are compared with experimental data for the validation. The computed results show goof agreements with the experimental measurements, implying that the CFD analysis is a useful and efficient tool for predicting turbulent flow characteristics of wake field of an axisymmetric body at incidence.