• Title/Summary/Keyword: Turbulence energy

Search Result 658, Processing Time 0.023 seconds

An Isothermal Mganetohydrodynamic Code and Its Application to the Parker Instability

  • KIM JONGSOO;RYU DONGSU;JONES T. W.;HONG S. S.
    • Journal of The Korean Astronomical Society
    • /
    • v.34 no.4
    • /
    • pp.281-283
    • /
    • 2001
  • As a companion to an adiabatic version developed by Ryu and his coworkers, we have built an isothermal magnetohydrodynamic code for astrophysical flows. It is suited for the dynamical simulations of flows where cooling timescale is much shorter than dynamical timescale, as well as for turbulence and dynamo simulations in which detailed energetics are unimportant. Since a simple isothermal equation of state substitutes the energy conservation equation, the numerical schemes for isothermal flows are simpler (no contact discontinuity) than those for adiabatic flows and the resulting code is faster. Tests for shock tubes and Alfven wave decay have shown that our isothermal code has not only a good shock capturing ability, but also numerical dissipation smaller than its adiabatic analogue. As a real astrophysical application of the code, we have simulated the nonlinear three-dimensional evolution of the Parker instability. A factor of two enhancement in vertical column density has been achieved at most, and the main structures formed are sheet-like and aligned with the mean field direction. We conclude that the Parker instability alone is not a viable formation mechanism of the giant molecular clouds.

  • PDF

Hydrodynamic Effect on the Inhibition for the Flow Accelerated Corrosion of an Elbow

  • Zeng, L.;Zhang, G.A.;Guo, X.P.
    • Corrosion Science and Technology
    • /
    • v.16 no.1
    • /
    • pp.23-30
    • /
    • 2017
  • The inhibition effect of thioureido imidazoline inhibitor (TAI) for flow accelerated corrosion (FAC) at different locations for an X65 carbon steel elbow was studied by array electrode and computational fluid dynamics (CFD) simulations. The distribution of the inhibition efficiency measured by electrochemical impedance spectroscopy (EIS) is in good accordance with the distribution of the hydrodynamic parameters at the elbow. The inhibition efficiencies at the outer wall are higher than those at the inner wall meaning that the lower inhibition efficiency is associated with a higher flow velocity, shear stress, and turbulent kinetic energy at the inner wall of the elbow, as well as secondary flow at the elbow rather than the mass transport of inhibitor molecules. Compared to the static condition, the inhibition efficiency of TAI for FAC was relatively low. It is also due to a drastic turbulence flow and high wall shear stress during the FAC test, which prevents the adsorption of inhibitor and/or damages the adsorbed inhibitor film.

Effect of Intake Vortex Occurrence on the Performance of an Axial Hydraulic Turbine in Sihwa-Lake Tidal Power Plant, Korea

  • Kim, Jin-Hyuk;Heo, Man-Woong;Cha, Kyung-Hun;Kim, Kwang-Yong;Tac, Se-Wyan;Cho, Yong;Hwang, Jae-Chun;Collins, Maria
    • International Journal of Fluid Machinery and Systems
    • /
    • v.5 no.4
    • /
    • pp.174-179
    • /
    • 2012
  • A numerical study to investigate the effect of intake vortex occurrence on the performance of an axial hydraulic turbine for generating tidal power energy in Sihwa-lake tidal power plant, Korea, is performed. Numerical analysis of the flow through an sxial hydraulic turbine is carried out by solving three-dimensional Reynolds-averaged Navier-Stokes dquations with the shear stress transport turbulence model. In the real turbine operation, the vortex flows are occurred in both the side corners around the intake of an axial hydraulic turbine due to the interaction between the inflow angle of water and intake structure. To analyze these vortex phenomena and to evaluate their impacts on the turbine performance, the internal flow fields of the axial hydraulic turbines with the different inflow angles are compared with their performances. As the results of numerical analysis, the vortex flows do not directly affect the turbine performance.

Effect of Vertical Mixing Scheme on Upper Ocean Simulation of the East Sea (연직혼합모수화가 동해 상층 모사에 미치는 영향)

  • Jang, Chan-Joo;Lim, Se-Han
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.13 no.6
    • /
    • pp.1034-1042
    • /
    • 2010
  • This study investigates effects of three different parameterizations of vertical mixing scheme on upper ocean simulation of the East Sea, focusing on the seasonal variations of the sea surface temperature(SST) and the mixed layer depth(MLD) using an ocean general circulation model(GFDL MOM1.1). The considered vertical mixing schemes are the Laplacian scheme(L scheme) that use a constant eddy coefficient, the Mellor-Yamada scheme(MY scheme), and a new scheme(Noh scheme). The Noh scheme, a second-order turbulence closure, was developed considering recent observational evidences such as the enhancement of turbulent kinetic energy near the sea surface. During summer L scheme underestimates the SST, while MY scheme overestimates the SST, compared to climatological SST. Noh scheme produces the SST in better agreement with climatological one. During winter all schemes overestimate the SST up to $4^{\circ}C$ compared to climatological SST. Vertical profiles of the basin-mean temperature show that L scheme produces higher temperature below the thermocline than those of other schemes. The winter MLD simulated from L scheme is rather large compared to that from other schemes, but the differences in MLD during summer are not significant.

New GPU computing algorithm for wind load uncertainty analysis on high-rise systems

  • Wei, Cui;Luca, Caracoglia
    • Wind and Structures
    • /
    • v.21 no.5
    • /
    • pp.461-487
    • /
    • 2015
  • In recent years, the Graphics Processing Unit (GPU) has become a competitive computing technology in comparison with the standard Central Processing Unit (CPU) technology due to reduced unit cost, energy and computing time. This paper describes the derivation and implementation of GPU-based algorithms for the analysis of wind loading uncertainty on high-rise systems, in line with the research field of probability-based wind engineering. The study begins by presenting an application of the GPU technology to basic linear algebra problems to demonstrate advantages and limitations. Subsequently, Monte-Carlo integration and synthetic generation of wind turbulence are examined. Finally, the GPU architecture is used for the dynamic analysis of three high-rise structural systems under uncertain wind loads. In the first example the fragility analysis of a single degree-of-freedom structure is illustrated. Since fragility analysis employs sampling-based Monte Carlo simulation, it is feasible to distribute the evaluation of different random parameters among different GPU threads and to compute the results in parallel. In the second case the fragility analysis is carried out on a continuum structure, i.e., a tall building, in which double integration is required to evaluate the generalized turbulent wind load and the dynamic response in the frequency domain. The third example examines the computation of the generalized coupled wind load and response on a tall building in both along-wind and cross-wind directions. It is concluded that the GPU can perform computational tasks on average 10 times faster than the CPU.

Visualization of Unstable Vortical Structure in a Propeller Wake Affected by Simulated Hull Wake (재현된 반류의 영향을 받는 프로펠러 후류 내 불안정한 날개끝 보오텍스 구조에 대한 정량적 가시화)

  • Kim, Kyung-Youl;Paik, Bu-Geun;Ahn, Jong-Woo
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.45 no.6
    • /
    • pp.620-630
    • /
    • 2008
  • The characteristics of complicated propeller wake influenced by hull wake are investigated by using a two-frame PIV (Particle Image Velocimetry) technique. As the propeller is significantly affected by the hull wake in a real marine vessel, the measurements of propeller wake under the hull wake would be certainly necessary for more reliable validation and the prediction of numerical simulation with wake modeling. Velocity field measurements have been conducted in a medium-size cavitation tunnel with a hull wake. Generally, the hull wake generated by the boundary layer of ship's hull produces the different loading distribution on the propeller blade in both upper and lower propeller planes. The difference of the propeller wake behaviors caused by the hull wake is discussed in terms of axial velocity, vorticity and turbulence kinetic energy distribution in the present study.

Twisted rudder for reducing fuel-oil consumption

  • Kim, Jung-Hun;Choi, Jung-Eun;Choi, Bong-Jun;Chung, Seok-Ho
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.6 no.3
    • /
    • pp.715-722
    • /
    • 2014
  • Three twisted rudders fit for large container ships have been developed; 1) the Z-twisted rudder that is an asymmetry type taking into consideration incoming flow angles of the propeller slipstream, 2) the ZB-twisted rudder with a rudder bulb added onto the Z-twisted rudder, and 3) the ZB-F twisted rudder with a rudder fin attached to the ZB-twisted rudder. The twisted rudders have been designed computationally with the hydrodynamic characteristics in a self-propulsion condition in mind. The governing equation is the Navier-Stokes equations in an unsteady turbulent flow. The turbulence model applied is the Reynolds stress. The calculation was carried out in towing and self-propulsion conditions. The sliding mesh technique was employed to simulate the flow around the propeller. The speed performances of the ship with the twisted rudders were verified through model tests in a towing tank. The twisted versions showed greater performance driven by increased hull efficiency from less thrust deduction fraction and more effective wake fraction and decreased propeller rotating speed.

Numerical Simulation of Erosive Wear on an Impact Sprinkler Nozzle Using a Remeshing Algorithm

  • Xu, Yuncheng;Yan, Haijun
    • International Journal of Fluid Machinery and Systems
    • /
    • v.9 no.4
    • /
    • pp.287-299
    • /
    • 2016
  • In China, agricultural irrigation water often contains a lot of suspended sediment which may cause the nozzle wear. In this study, a new numerical simulation combing the Discrete Phase Model and a remeshing algorithm was conducted. The geometric boundary deformation caused by the erosion wear, was considered. The weight loss of the nozzle, the node displacement and the flow field were investigated and discussed. The timestep sensitivity analysis showed that the timestep is very critical in the erosion modeling due to the randomness and the discreteness of the erosion behavior. Based on the simulation results, the major deformation of the boundary wall due to the erosion was found at the corners between outlet portion and contraction portion. Based on this remeshing algorithm, the simulated erosion weight loss of the nozzle is 4.62% less compared with the case without boundary deformation. The boundary deformation changes the pressure and velocity distribution, and eventually changes the sediment distribution inside the nozzle. The average turbulence kinetic energy at the outlet orifice is found to decrease with the erosion time, which is believed to change the nozzle's spray performance eventually.

A Study on Enhancement of UV Disinfection System Performance by the Vortex Generator (와동 발생기를 이용한 자외선 살균 시스템 성능 향상에 관한 연구)

  • Kim, Bong-Hwan;Ahn, Kook-Chan;Kim, Dong-Jin
    • Journal of the Korean Society of Safety
    • /
    • v.22 no.1 s.79
    • /
    • pp.24-29
    • /
    • 2007
  • The effectiveness of a UV(ultra violet) disinfection system depends on the characteristics of the waste water, flow conditions, the intensity of UV radiation, the amount of time the microorganisms are exposed to the radiation, and the reactor configuration. The wast water flow conditions are important factors in the design of UV disinfection system from the point of enhancement view of UV disinfection. The turbulent energy intensity in the wake by the vortex shedding are effective for UV radiation. Therewith the effectiveness of vortex generator is considered as a enhancement of UV disinfection. The experimental results presented give important evidences and explain that it is possible to predict UV disinfection performance based on flow experiments. An experimental investigation of two types of the vortex generator is presented. The qualitative and quantitative evaluations of the wake are made by flow visualization using smoke wire method and the measurement of vortex frequencies in the wind tunnel. From the experiment, following results were obtained that the delta wing type vortex generator is more effective than circular type because of the higher vortex frequencies and the smaller drag.

Estimation on the Power Spectral Densities of Daily Instantaneous Maximum Fluctuation Wind Velocity (변동풍속의 파워 스펙트럴 밀도에 관한 평가)

  • Oh, Jong Seop
    • Journal of Korean Society of Disaster and Security
    • /
    • v.10 no.2
    • /
    • pp.21-28
    • /
    • 2017
  • Wind turbulence data is required for engineering calculations of gust speeds, mean and fluctuating loading. Spectral densities are required as input data for methods used in assessing dynamic response. This study is concerned with the estimation of daily instantaneous maximum wind velocity in the meteorological major cities (selected each 6 points) during the yearly 1987-2016.12.1. The purpose of this paper is to present the power spectral densities of the daily instantaneous maximum wind velocity. In the processes of analysis, used observations data obtained at Korea Meteorological Adminstration(KMA), it is assumed as a random processes. From the analysis results, in the paper estimated power spectral densities function(Blunt model) shows a very closed with von Karman and Solari's spectrum models.