• Title/Summary/Keyword: Turbulence Flow

검색결과 2,256건 처리시간 0.039초

수축부와 확대부의 중심 유동에서 나타나는 대칭적 난류구조에 관한 연구 (Study on centerline turbulent structures of circular contraction and expansion ducts)

  • 한용운;이장환
    • 대한기계학회논문집B
    • /
    • 제22권2호
    • /
    • pp.221-228
    • /
    • 1998
  • In order to look into the comparative flow characteristics between a circular contraction duct and a circular expansion duct the both centerline turbulent structures have been investigated by the hot wire anemometry. Both of the contraction and the expansion have Morel type contours. Means, turbulences, and triple moments have been measured for the turbulent kinetic energy budgets along their centerlines. It is resulted that mean velocities of both have much deviated from theoretical values calculated by one-dimensional continuity considerations, and that for the same upstream condition, the expansion maintains the isotropy in general while the contraction maintains a severe anisotropy through the whole duct. The mean transport of the TKE along the expansion is willing to balance mostly with the dissipation in the TKE budgets while that along the contraction is balanced with the production in the turbulent kinetic energy equation.

단순변형률 조건 하의 회전하는 가변단면 $90^{\circ}$ 곡덕트내 외향 난류유동 측정 (Measurement of Outward Turbulent Flows Subject to Plane Rate of Strain in a Rotating 90 Deg. Curved Duct of Variable Cross-Section)

  • 오창민;최영돈
    • 대한기계학회논문집B
    • /
    • 제24권5호
    • /
    • pp.623-631
    • /
    • 2000
  • Hot-wire measurements were carried out on the developing turbulent flows subject to plane rate of strain in a rotating curved duct. The cross-section of the curved duct varies from 100mm${\times}$50mm rectangular shape at the bend inlet gradually to the 50mm${\times}$100mm rectangular shape at the bend outlet. Experimental setup consists of the test section of $90^{\circ}$ curved duct, rotating disc of 1.95m diameter, Ag-Ni precision slip ring, automatic traversing mechanism, variable speed motor, centrifugal blower, orifice flowmeter and hot-wire anemometer. Data signals from the rotating curved duct are transmitted through the slip ring to the computer which is located at the outside of the rotating disc. 3-dimensional velocity and 6 Reynold stresses components were obtained from the fluctuating and mean voltage measured by the slant type hot-wire probe rotating into 6 orientations. We investigate the effects of Coriolis and centrifugal forces on the turbulence structure.

종횡비에 따른 납작관-평판휜 형상의 밀집형 열교환기 내공기 측 대류열전달특성에 대한 수치해석 (Numerical Analysis for the Air-Side Convective Heat Transfer Characteristics in a Compact Heat Exchanger with Flat Tubes and Plate Fins According to the Aspect Ratio)

  • 모정하
    • 대한기계학회논문집B
    • /
    • 제32권9호
    • /
    • pp.695-703
    • /
    • 2008
  • Numerical analysis has been carried out to investigate air-side convective heat transfer characteristics in a compact heat exchanger with flat tubes and continuous plate fins according to the aspect ratio. RNG k-$\varepsilon$ model is applied for turbulence analysis. Simulation results such as air velocity and temperature distributions are presented, and heat transfer coefficients are compared with previous correlations for circular tubes. The numerical conditions are considered for the aspect ratios ranging from 3.06 to 5.44 and Reynolds number ranging from 1000 to 10,000. The results showed that heat transfer coefficients decreased with the increase of aspect ratio. From the calculated results a correlation of Colburn j factor for the considered aspect ratio in the compact heat exchanger system is suggested. The predicted results in this study can be applied to the optimal design of air conditioning system.

Numerical Study for the Performance Analysis and Design of a Crossflow- Type Forced Draft Cooling Tower

  • Choi, Young-Ki;Kim, Byung-Jo;Lee, Sang-Yun;Lee, Jung-Hee
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • 제8권1호
    • /
    • pp.1-13
    • /
    • 2000
  • A numerical study for performance analysis of a crossflow-type forced draft cooling tower has been performed based on the finite volume method with non-orthogonal body fitted, and non-staggered grid system. For solving the coupling problem between water and air, air enthalpy, moisture fraction, water enthalpy, and water mass balance equations are solved with Navier-Stoke's equations simultaneously. For the effect of turbulence, the standard k-$\varepsilon$ turbulent model is implied in this analysis. The predicted result of the present analysis is compared with the experimental data and the commercial software result to validate the present study. The predicted results show good agreement with the experimental data and the commercial software result. To investigate the influence of the cooling tower design parameters such as approach, range and wet bulb temperature, parametric studies are also performed.

  • PDF

Numerical optimization of Wells turbine for wave energy extraction

  • Halder, Paresh;Rhee, Shin Hyung;Samad, Abdus
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제9권1호
    • /
    • pp.11-24
    • /
    • 2017
  • The present work focuses multi-objective optimization of blade sweep for a Wells turbine. The blade-sweep parameters at the mid and the tip sections are selected as design variables. The peak-torque coefficient and the corresponding efficiency are the objective functions, which are maximized. The numerical analysis has been carried out by solving 3D RANS equations based on k-w SST turbulence model. Nine design points are selected within a design space and the simulations are run. Based on the computational results, surrogate-based weighted average models are constructed and the population based multi-objective evolutionary algorithm gave Pareto optimal solutions. The peak-torque coefficient and the corresponding efficiency are enhanced, and the results are analysed using CFD simulations. Two extreme designs in the Pareto solutions show that the peak-torque-coefficient is increased by 28.28% and the corresponding efficiency is decreased by 13.5%. A detailed flow analysis shows the separation phenomena change the turbine performance.

듀얼 벨 노즐에 확장-굴절(E-D) 노즐 개념을 적용한 기초 전산수치해석 (Numerical Study of Dual Bell Nozzle by applying the Concept of Expansion-Deflection Nozzle)

  • 문태석;박상현;최준섭;허환일
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2017년도 제48회 춘계학술대회논문집
    • /
    • pp.679-681
    • /
    • 2017
  • 듀얼 벨 노즐에 확장-굴절 노즐 개념을 적용한 기초 전산수치해석 연구를 수행하였다. CEA 코드를 이용하여 노즐 내부 유동의 화학조성을 계산한 8 화학종 동결유동 해석을 진행하였고, 난류 모델은 $k-{\omega}$ SST 모델을 선정하였다. 듀얼 벨 노즐에 확장-굴절 노즐 개념을 적용함에 따라 변화된 천이고도 및 성능 계산을 수행하였다. 해석 결과 확장-굴절 노즐 개념을 적용함에 따라 과대팽창 조건이 형성되었고, 그에 따라 천이고도가 상승하였다.

  • PDF

On the domain size for the steady-state CFD modelling of a tall building

  • Revuz, J.;Hargreaves, D.M.;Owen, J.S.
    • Wind and Structures
    • /
    • 제15권4호
    • /
    • pp.313-329
    • /
    • 2012
  • There have existed for a number of years good practice guidelines for the use of Computational Fluid Dynamics (CFD) in the field of wind engineering. As part of those guidelines, details are given for the size of flow domain that should be used around a building of height, H. For low-rise buildings, the domain sizes produced by following the guidelines are reasonable and produce results that are largely free from blockage effects. However, when high-rise or tall buildings are considered, the domain size based solely on the building height produces very large domains. A large domain, in most cases, leads to a large cell count, with many of the cells in the grid being used up in regions far from the building/wake region. This paper challenges this domain size guidance by looking at the effects of changing the domain size around a tall building. The RNG ${\kappa}-{\varepsilon}$ turbulence model is used in a series of steady-state solutions where the only parameter varied is the domain size, with the mesh resolution in the building/wake region left unchanged. Comparisons between the velocity fields in the near-field of the building and pressure coefficients on the building are used to inform the assessment. The findings of the work for this case suggest that a domain of approximately 10% the volume of that suggested by the existing guidelines could be used with a loss in accuracy of less than 10%.

New estimation methodology of six complex aerodynamic admittance functions

  • Han, Y.;Chen, Z.Q.;Hua, X.G.
    • Wind and Structures
    • /
    • 제13권3호
    • /
    • pp.293-307
    • /
    • 2010
  • This paper describes a new method for the estimation of six complex aerodynamic admittance functions. The aerodynamic admittance functions relate buffeting forces to the incoming wind turbulent components, of which the estimation accuracy affects the prediction accuracy of the buffeting response of long-span bridges. There should be two aerodynamic admittance functions corresponding to the longitudinal and vertical turbulent components, respectively, for each gust buffeting force. Therefore, there are six aerodynamic admittance functions in all for the three buffeting forces. Sears function is a complex theoretical expression for the aerodynamic admittance function for a thin airfoil. Similarly, the aerodynamic admittance functions for a bridge deck should also be complex functions. This paper presents a separated frequency-by-frequency method for estimating the six complex aerodynamic admittance functions. A new experimental methodology using an active turbulence generator is developed to measure simultaneously all the six complex aerodynamic admittance functions. Wind tunnel tests of a thin plate model and a streamlined bridge section model are conducted in turbulent flow. The six complex aerodynamic admittance functions, determined by the developed methodology are compared with the Sears functions and Davenport's formula.

3-D CFD Analysis of the CANDU-6 Moderator Circulation Under Nnormal Operating Conditions

  • Yoon, Churl;Rhee, Bo-Wook;Min, Byung-Joo
    • Nuclear Engineering and Technology
    • /
    • 제36권6호
    • /
    • pp.559-570
    • /
    • 2004
  • A computational fluid dynamics model for predicting moderator circulation inside the Canada deuterium uranium (CANDU) reactor vessel has been developed to estimate the local subcooling of the moderator in the vicinity of the calandria tubes. The buoyancy effect induced by the internal heating is accounted for by the Boussinesq approximation. The standard $k-{\varepsilon}$ turbulence model with logarithmic wall treatment is applied to predict the turbulent jet flows from the inlet nozzles. The matrix of the calandria tubes in the core region is simplified to a porous media in which the anisotropic hydraulic impedance is modeled using an empirical correlation of pressure loss. The governing equations are solved by DFX-4.4, a commercial CFD code developed by AEA technology. The resultant flow patterns of the constant-z slices containing the inlet nozzles and the outlet port are "mined-type", as observed in the former 2-dimensional experimental investigations. With 103% full power for conservatism, the maximum temperature of the moderator is $82.9^{\circ}C$ at the top of the core region. Considering the hydrostatic pressure change, the minimum subcooling is $24.8^{\circ}C$.

공탄성 변형효과를 고려한 5MW급 풍력발전 블레이드의 피치각에 따른 성능해석 (Aerodynamic and Structural Design of 6kW Class Vertical-Axis Wind Turbine)

  • 김요한;김동현;황미현;김경희;황병선;홍은성
    • 한국유체기계학회 논문집
    • /
    • 제14권3호
    • /
    • pp.39-44
    • /
    • 2011
  • In this study, performance analyses have been conducted for a 5MW class wind turbine blade model. Advanced computational analysis system based on computational fluid dynamics(CFD) and computational structural dynamics(CSD) has been developed in order to investigate detailed dynamic responsed of wind turbine blade. Reynolds-averaged Navier-Stokes (RANS) equations with K-${\epsilon}$ turbulence model are solved for unsteady flow problems of the rotating turbine blade model. A fully implicit time marching scheme based on the Newmark direct integration method is used for computing the coupled aeroelastic governing equations of the 3D turbine blade for fluid-structure interaction (FSI) problems. Predicted aerodynamic performance considering structural deformation effect of the blade show different results compared to the case of rigid blade model.